## FEATURES

- TTL compatible inputs and outputs; tristate I/O
- Refresh Interval:
- 1,024 cycles/16 ms
- Refresh Mode:
- $\overline{\text { RAS-Only, }} \overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ (CBR), and Hidden
- JEDEC standard pinout
- Single power supply: $3.3 \mathrm{~V} \pm 10 \%$
- Byte Write and Byte Read operation via two $\overline{\mathrm{CAS}}$
- Extended Temperature Range: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Lead-free available


## PIN CONFIGURATIONS

42-Pin SOJ


## DESCRIPTION

The ISSI IS41LV16105B is $1,048,576 \times 16$-bit high-performance CMOS Dynamic Random Access Memories. Fast Page Mode allows 1,024 random accesses within a single row with access cycle time as short as 20 ns per 16 -bit word. The Byte Write control, of upper and lower byte, makes the IS41LV16105B ideal for use in 16-, 32 -bit wide data bus systems.

These features make the IS41LV16105B ideally suited for highbandwidth graphics, digital signal processing, high-performance computing systems, and peripheral applications.

The IS41LV16105B is packaged in a 42-pin 400-mil SOJ and 400-mil 44- (50-) pin TSOP (Type II).

KEY TIMING PARAMETERS

| Parameter | -50 | -60 | Unit |
| :--- | :---: | :---: | :---: |
| Max. $\overline{\text { RAS }}$ Access Time (trac) | 50 | 60 | ns |
| Max. $\overline{\text { CAS }}$ Access Time (tcac) | 13 | 15 | ns |
| Max. Column Address Access Time (taA) | 25 | 30 | ns |
| Min. Fast Page Mode Cycle Time (tpc) | 20 | 25 | ns |
| Min. Read/Write Cycle Time (trc) | 84 | 104 | ns |

## PIN DESCRIPTIONS

| A0-A9 | Address Inputs |
| :--- | :--- |
| I/O0-15 | Data Inputs/Outputs |
| $\overline{\text { WE }}$ | Write Enable |
| $\overline{\overline{O E}}$ | Output Enable |
| $\overline{\text { RAS }}$ | Row Address Strobe |
| $\overline{\text { UCAS }}$ | Upper Column Address Strobe |
| $\overline{\text { LCAS }}$ | Lower Column Address Strobe |
| VDD | Power |
| GND | Ground |
| NC | No Connection |

## FUNCTIONAL BLOCK DIAGRAM



## TRUTHTABLE

| Function | $\overline{\text { RAS }}$ | LCAS | $\overline{\text { UCAS }}$ | $\overline{\text { WE }}$ | $\overline{\mathrm{CE}}$ | Address tr/tc | I/O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standby | H | H | H | X | X | X | High-Z |
| Read:Word | L | L | L | H | L | ROW/COL | Dout |
| Read:Lower Byte | L | L | H | H | L | ROW/COL | Lower Byte, Dout Upper Byte, High-Z |
| Read:Upper Byte | L | H | L | H | L | ROW/COL | Lower Byte, High-Z Upper Byte, Dout |
| Write:Word (Early Write) | L | L | L | L | X | ROW/COL | Din |
| Write:LowerByte (Early Write) | L | L | H | L | X | ROW/COL | Lower Byte, Din Upper Byte, High-Z |
| Write:UpperByte (Early Write) | L | H | L | L | X | ROW/COL | Lower Byte, High-Z Upper Byte, Din |
| Read-Write ${ }^{(1,2)}$ | L | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW/COL | Dout, Din |
| Hidden Refresh $\begin{gathered}\text { Read } \\ \text { Write } \\ \text { Wri,3) }\end{gathered}$ | $\begin{aligned} & \mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \rightarrow \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$ | ROW/COL ROW/COL | Dout Dout |
| $\overline{\text { RAS-Only Refresh }}$ | L | H | H | X | X | ROW/NA | High-Z |
| CBRRefresh ${ }^{(4)}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High-Z |

## Notes:

1. These WRITE cycles may also be BYTE WRITE cycles (either $\overline{\text { LCAS }}$ or UCAS active).
2. These READ cycles may also be BYTE READ cycles (either $\overline{\text { LCAS }}$ or UCAS active).
3. EARLY WRITE only.
4. At least one of the two $\overline{\mathrm{CAS}}$ signals must be active ( $\overline{\mathrm{LCAS}}$ or $\overline{\mathrm{UCAS}}$ ).

## Functional Description

The IS41LV16105B is a CMOS DRAM optimized for highspeed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits. These are entered ten bits (AO-A9) at a time. The row address is latched by the Row Address Strobe ( $\overline{\mathrm{RAS}}$ ). The column address is latched by the Column Address Strobe ( $\overline{\mathrm{CAS}})$. $\overline{\mathrm{RAS}}$ is used to latch the first nine bits and $\overline{\mathrm{CAS}}$ is used the latter nine bits.

The IS41LV16105B has two $\overline{\text { CAS }}$ controls, $\overline{\text { LCAS }}$ and $\overline{\text { UCAS. The }} \overline{\text { LCAS }}$ and $\overline{\text { UCAS }}$ inputs internally generates a CAS signal functioning in an identical manner to the single CAS input on the other $1 \mathrm{M} \times 16$ DRAMs. The key difference is that each $\overline{\mathrm{CAS}}$ controls its corresponding I/O tristate logic (in conjunction with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RAS}}$ ). $\overline{\text { LCAS }}$ controls I/O0 through I/O7 and UCAS controls I/O8 through I/O15.

The IS41LV16105B $\overline{\mathrm{CAS}}$ function is determined by the first $\overline{\text { CAS }}$ (LCAS or UCAS) transitioning LOW and the last transitioning back HIGH. The two $\overline{\mathrm{CAS}}$ controls give the IS41LV16105B both BYTE READ and BYTE WRITE cycle capabilities.

## Memory Cycle

A memory cycle is initiated by bring $\overline{\text { RAS }}$ LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tras time has expired. A new cycle must not be initiated until the minimum precharge time trp, tcp has elapsed.

## Read Cycle

A read cycle is initiated by the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$, whichever occurs last, while holding WE HIGH. The column address must be held for a minimum time specified by tar. Data Out becomes valid only when trac, taA, tcac and toea are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

## Write Cycle

A write cycle is initiated by the falling edge of $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{WE}}$, whichever occurs last. The input data must be valid at or before the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WE}}$, whichever occurs last.

## Refresh Cycle

To retain data, 1,024 refresh cycles are required in each 16 ms period. There are two ways to refresh the memory.

1. By clocking each of the 1,024 row addresses (A0 through A9) with $\overline{\text { RAS }}$ at least once every 16 ms . Any read, write, read-modify-write or $\overline{\text { RAS-only cycle re- }}$ freshes the addressed row.
2. Using a $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh cycle. $\overline{\mathrm{CAS}}$-beforeRAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In $\overline{\text { CAS-before-RAS }}$ refresh cycle, an internal 9 -bit counter provides the row addresses and the external address inputs are ignored.
$\overline{\text { CAS-before- } \overline{R A S}}$ is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

## Power-On

After application of the VDD supply, an initial pause of $200 \mu \mathrm{~s}$ is required followed by a minimum of eight initialization cycles (any combination of cycles containing a $\overline{\text { RAS }}$ signal).
During power-on, it is recommended that $\overline{\text { RAS }}$ track with VDD or be held at a valid $\mathrm{V}_{\mathrm{IH}}$ to avoid current surges.

## ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

| Symbol | Parameters | Rating | Unit |  |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{T}}$ | Voltage on Any Pin Relative to GND | 3.3 V | -0.5 to +4.6 | V |
| $\mathrm{~V}_{\mathrm{DD}}$ | Supply Voltage | 3.3 V | -0.5 to +4.6 | V |
| louT | Output Current |  | 50 | mA |
| $\mathrm{PD}^{\mathrm{T}}$ | Power Dissipation | 1 | W |  |
| $\mathrm{TA}_{\mathrm{A}}$ | Commercial Operation Temperature |  | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
|  | Extended Temperature | -30 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
|  | Industrial Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
| TsTG | Storage Temperature | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |  |

## Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

| Symbol | Parameter |  | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| VDD | Supply Voltage | $\mathbf{3 . 3 V}$ | 3.0 | 3.3 | 3.6 | V |
| V IH | Input High Voltage | $\mathbf{3 . 3 V}$ | 2.0 | - | $\mathrm{VDD}+0.3$ | V |
| VIL | Input Low Voltage | $\mathbf{3 . 3 V}$ | -0.3 | - | 0.8 | V |
| $\mathrm{~T}_{\text {A }}$ | Commercial Ambient Temperature |  | 0 | - | +70 | ${ }^{\circ} \mathrm{C}$ |
|  | Extended Ambient Temperature |  | -30 | - | +85 | ${ }^{\circ} \mathrm{C}$ |
|  | Industrial Ambient Temperature |  | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |

## CAPACITANCE ${ }^{(1,2)}$

| Symbol | Parameter | Max. | Unit |
| :---: | :--- | :---: | :---: |
| CIn1 | Input Capacitance: A0-A9 | 5 | pF |
| CIn2 | Input Capacitance: $\overline{\text { RAS, }} \overline{\text { UCAS, }} \overline{\text { LCAS, }} \overline{\text { WE, }} \overline{\mathrm{OE}}$ | 7 | pF |
| CıO | Data Input/Output Capacitance: I/O0-I/O15 | 7 | pF |

## Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,

## ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Recommended Operating Conditions unless otherwise noted.)

| Symbol | Parameter | Test Condition | Speed | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IIL | Input Leakage Current | Any input $0 V \leq V_{I N} \leq V_{D D}$ Other inputs not under test $=0 \mathrm{~V}$ |  | -5 | 5 | $\mu \mathrm{A}$ |
| Iı | Output Leakage Current | Output is disabled (Hi-Z) $0 \mathrm{~V} \leq \mathrm{VOUT}^{\leq} \leq \mathrm{VDD}_{\mathrm{DD}}$ |  | -5 | 5 | $\mu \mathrm{A}$ |
| Vон | Output High Voltage Level | $\mathrm{IOH}=-2.0 \mathrm{~mA}(3.3 \mathrm{~V})$ |  | 2.4 | - | V |
| Vol | Output Low Voltage Level | $\mathrm{IOL}=2.0 \mathrm{~mA}(3.3 \mathrm{~V})$ |  | - | 0.4 | V |
| Icc1 | Standby Current: TTL | $\begin{array}{rr}\overline{\text { RAS }, \overline{L C A S}, \overline{U C A S}} \geq \mathrm{V} \mathrm{VH} & \\ \text { Commerical } & 3.3 \mathrm{~V} \\ \text { Extended/Industrial } & 3.3 \mathrm{~V}\end{array}$ |  |  | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Icc2 | Standby Current: CMOS | $\overline{\text { RAS }}$, $\overline{\text { LCAS }}$, $\overline{\text { UCAS }} \geq \mathrm{VDD}-0.2 \mathrm{~V} \quad 3.3 \mathrm{~V}$ |  | - | 0.5 | mA |
| Icc3 | Operating Current: <br> Random Read/Write ${ }^{(2,3,4)}$ <br> Average Power Supply Current | $\overline{\text { RAS, }} \overline{\text { LCAS }}, \overline{\mathrm{UCAS}}$, <br> Address Cycling, trC $=\operatorname{trC}$ (min.) | $\begin{aligned} & -50 \\ & -60 \end{aligned}$ |  | $\begin{aligned} & 160 \\ & 145 \end{aligned}$ | mA |
| Icc4 | Operating Current: <br> Fast Page Mode ${ }^{(2,3,4)}$ Average Power Supply Current | $\overline{\text { RAS }}=$ VIL, $\overline{\text { LCAS }}, \overline{\text { UCAS }}$, Cycling tpc $=$ tpc (min.) | $\begin{aligned} & \hline-50 \\ & -60 \end{aligned}$ |  | $\begin{aligned} & 90 \\ & 80 \end{aligned}$ | mA |
| Icc5 | Refresh Current: <br> RAS-Only ${ }^{(2,3)}$ <br> Average Power Supply Current | $\overline{\text { RAS }}$ Cycling, $\overline{\text { LCAS }}, \overline{\mathrm{UCAS}} \geq \mathrm{V}_{\mathrm{IH}}$ $\mathrm{tRC}=\mathrm{tRC}$ (min.) | $\begin{aligned} & -50 \\ & -60 \end{aligned}$ | - | $\begin{aligned} & 160 \\ & 145 \end{aligned}$ | mA |
| Icc6 | Refresh Current: <br> CBR ${ }^{(2,3,5)}$ <br> Average Power Supply Current | $\overline{\text { RAS, }} \overline{\text { LCAS, }} \overline{\text { UCAS }}$ Cycling $\operatorname{tRC}=\operatorname{tRC}(\mathrm{min}$. | $\begin{aligned} & -50 \\ & -60 \end{aligned}$ | - | $\begin{aligned} & 160 \\ & 145 \end{aligned}$ | mA |

## Notes:

1. An initial pause of $200 \mu \mathrm{~s}$ is required after power-up followed by eight $\overline{\mathrm{RAS}}$ refresh cycles ( $\overline{\mathrm{RAS}}-\mathrm{Only}$ or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.
2. Dependent on cycle rates.
3. Specified values are obtained with minimum cycle time and the output open.
4. Column-address is changed once each Fast page cycle.
5. Enables on-chip refresh and address counters.

## AC CHARACTERISTICS ${ }^{(1,2,3,3,5,5,6)}$

(Recommended Operating Conditions unless otherwise noted.)

| Symbol | Parameter | -50 |  | -60 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| trc | Random READ or WRITE Cycle Time | 84 | - | 104 | - | ns |
| trac | Access Time from $\overline{\mathrm{RAS}}^{(6,7)}$ | - | 50 | - | 60 | ns |
| tcac | Access Time from $\overline{\mathbf{C A S}}^{(6,8,15)}$ | - | 13 | - | 15 | ns |
| tAA | Access Time from Column-Address ${ }^{(6)}$ | - | 25 | - | 30 | ns |
| tras | RAS Pulse Width | 50 | 10K | 60 | 10K | ns |
| trp | $\overline{\text { RAS Precharge Time }}$ | 30 | - | 40 | - | ns |
| tcas | $\overline{\mathrm{CAS}}$ Pulse Width ${ }^{(26)}$ | 8 | 10K | 10 | 10K | ns |
| tcp | $\overline{\text { CAS }}$ Precharge Time ${ }^{(9,25)}$ | 9 | - | 9 | - | ns |
| tcsh | $\overline{\text { CAS }}$ Hold Time ${ }^{(21)}$ | 38 | - | 40 | - | ns |
| trcd | $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time ${ }^{(10,20)}$ | 12 | 37 | 14 | 45 | ns |
| tasr | Row-Address Setup Time | 0 | - | 0 | - | ns |
| trah | Row-Address Hold Time | 8 | - | 10 | - | ns |
| tasc | Column-Address Setup Time ${ }^{(20)}$ | 0 | - | 0 | - | ns |
| tcah | Column-Address Hold Time ${ }^{(20)}$ | 8 | - | 10 | - | ns |
| tar | Column-Address Hold Time (referenced to $\overline{\mathrm{RAS}}$ ) | 30 | - | 40 | - | ns |
| trad | $\overline{\mathrm{RAS}}$ to Column-Address Delay Time ${ }^{(11)}$ | 10 | 25 | 12 | 30 | ns |
| tral | Column-Address to $\overline{\mathrm{RAS}}$ Lead Time | 25 | - | 30 | - | ns |
| trpc | $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Precharge Time | 5 | - | 5 | - | ns |
| trsh | $\overline{\text { RAS }}$ Hold Time ${ }^{(27)}$ | 8 | - | 10 | - | ns |
| trhcp | $\overline{\text { RAS }}$ Hold Time from $\overline{\mathrm{CAS}}$ Precharge | 37 | - | 37 | - | ns |
| tcLz | $\overline{\text { CAS }}$ to Output in Low-Z ${ }^{(15, ~ 29)}$ | 0 | - | 0 | - | ns |
| tcre | $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ Precharge Time ${ }^{(21)}$ | 5 | - | 5 | - | ns |
| tod | Output Disable Time ${ }^{(19, ~ 28, ~ 29)}$ | 3 | 15 | 3 | 15 | ns |
| toe | Output Enable Time ${ }^{(15,16)}$ | - | 13 | - | 15 | ns |
| toed | Output Enable Data Delay (Write) | 20 | - | 20 | - | ns |
| toenc |  | 5 | - | 5 | - | ns |
| toep | $\overline{\mathrm{OE}}$ HIGH Pulse Width | 10 | - | 10 | - | ns |
| toes | $\overline{\text { OE LOW to } \overline{\mathrm{CAS}} \text { HIGH Setup Time }}$ | 5 | - | 5 | - | ns |
| trcs | Read Command Setup Time ${ }^{(17,20)}$ | 0 | - | 0 | - | ns |
| trRH | Read Command Hold Time (referenced to $\overline{\mathrm{RAS}})^{(12)}$ | 0 | - | 0 | - | ns |
| trach | Read Command Hold Time (referenced to $\overline{\mathrm{CAS}})^{(12, ~ 17, ~ 21)}$ | 0 | - | 0 | - | ns |
| twCH | Write Command Hold Time ${ }^{(17,27)}$ | 8 | - | 10 | - | ns |

## AC CHARACTERISTICS (Continued) ${ }^{(1,2,3,4,5,6)}$

(Recommended Operating Conditions unless otherwise noted.)

| Symbol | Parameter | -50 |  | -60 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| twCR | Write Command Hold Time (referenced to $\overline{\mathrm{RAS}}{ }^{(17)}$ | 40 | - | 50 | - | ns |
| twp | Write Command Pulse Width ${ }^{(17)}$ | 8 | - | 10 | - | ns |
| twPz |  | 10 | - | 10 | - | ns |
| trwL | Write Command to $\overline{\text { RAS }}$ Lead Time ${ }^{(17)}$ | 13 | - | 15 | - | ns |
| tcwL | Write Command to $\overline{\text { CAS }}$ Lead Time ${ }^{(17, ~ 21)}$ | 8 | - | 10 | - | ns |
| twcs | Write Command Setup Time ${ }^{(14,17,20)}$ | 0 | - | 0 | - | ns |
| tDhr | Data-in Hold Time (referenced to $\overline{\mathrm{RAS}}$ ) | 39 | - | 39 | - | ns |
| tach | Column-Address Setup Time to $\overline{\text { CAS }}$ Precharge during WRITE Cycle | 15 | - | 15 | - | ns |
| toen | $\overline{\mathrm{OE}}$ Hold Time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle ${ }^{(18)}$ | 8 | - | 10 | - | ns |
| tDs | Data-In Setup Time ${ }^{(15, ~ 22)}$ | 0 | - | 0 | - | ns |
| tDH | Data-In Hold Time ${ }^{(15,22)}$ | 8 | - | 10 | - | ns |
| trwc | READ-MODIFY-WRITE Cycle Time | 108 | - | 133 | - | ns |
| trwD | $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ Delay Time during READ-MODIFY-WRITE Cycle ${ }^{(14)}$ | 64 | - | 77 | - | ns |
| tcwd | $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ Delay Time ${ }^{(14,20)}$ | 26 | - | 32 | - | ns |
| tawd | Column-Address to $\overline{\mathrm{WE}}$ Delay Time ${ }^{(14)}$ | 39 | - | 47 | - | ns |
| tpc | Fast Page Mode READ or WRITE Cycle Time ${ }^{(24)}$ | 20 | - | 25 | - | ns |
| trasp | $\overline{\text { RAS }}$ Pulse Width | 50 | 100K | 60 | 100K | ns |
| tcPA | Access Time from $\overline{\text { CAS }}$ Precharge ${ }^{(15)}$ | - | 30 | - | 35 | ns |
| tprwc | READ-WRITE Cycle Time ${ }^{(24)}$ | 56 | - | 68 | - | ns |
| tcor | Data Output Hold after $\overline{\text { CAS }}$ LOW | 5 | - | 5 | - | ns |
| toff | Output Buffer Turn-Off Delay from $\overline{\text { CAS }}$ or $\overline{\mathrm{RAS}}{ }^{(13,15,19,29)}$ | 1.6 | 12 | 1.6 | 15 | ns |
| twhz | Output Disable Delay from $\overline{\mathrm{WE}}$ | 3 | 10 | 3 | 10 | ns |
| tclch | Last $\overline{\text { CAS }}$ going LOW to First $\overline{\text { CAS }}$ returning $\mathrm{HIGH}^{(23)}$ | 10 | - | 10 | - | ns |
| tcsR | $\overline{\text { CAS }}$ Setup Time (CBR REFRESH) ${ }^{(30,20)}$ | 5 | - | 5 | - | ns |
| tchr | $\overline{\text { CAS }}$ Hold Time (CBR REFRESH) ${ }^{(30,21)}$ | 8 | - | 10 | - | ns |
| tord | $\overline{\mathrm{OE}}$ Setup Time prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH Cycle | 0 | - | 0 | - | ns |
| tref | Auto Refresh Period (1,024 Cycles) | - | 16 | - | 16 | ms |
| tT | Transition Time (Rise or Fall) ${ }^{(2,3)}$ | 1 | 50 | 1 | 50 | ns |

## AC TEST CONDITIONS

Output load: One TTL Load and $50 \mathrm{pF}(\mathrm{VDD}=3.3 \mathrm{~V} \pm 10 \%)$
Input timing reference levels: $\mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}(\mathrm{VDD}=3.3 \mathrm{~V} \pm 10 \%)$
Output timing reference levels: V он $=2.0 \mathrm{~V}, \mathrm{VoL}=0.8 \mathrm{~V}(3.3 \mathrm{~V} \pm 10 \%)$

## Notes:

1. An initial pause of $200 \mu$ s is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycle ( $\overline{\mathrm{RAS}}-\mathrm{Only}$ or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tref refresh requirement is exceeded.
2. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times, are measured between $\mathrm{V}_{\mathbf{I H}}$ and $\mathrm{V}_{\text {IL }}$ (or between $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {IH }}$ ) and assume to be 1 ns for all inputs.
 monotonic manner.
3. If $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{RAS}}=\mathrm{VIH}$, data output is High-Z.
4. If $\mathrm{CAS}=\mathrm{V}_{\mathrm{IL}}$, data output may contain data from the last valid READ cycle.
5. Measured with a load equivalent to one TTL gate and 50 pF .
6. Assumes that $\operatorname{trCD} \leq \operatorname{trCD}(\mathrm{MAX})$. If $\operatorname{trcD}$ is greater than the maximum recommended value shown in this table, $\operatorname{trac}$ will increase by the amount that trCD exceeds the value shown.
7. Assumes that $\operatorname{trcD} \geq \operatorname{trcD}(M A X)$.
8. If CAS is LOW at the falling edge of RAS, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, CAS and RAS must be pulsed for tcp.
9. Operation with the trcD (MAX) limit ensures that trac (MAX) can be met. $\operatorname{trCD}(\mathrm{MAX})$ is specified as a reference point only; if trcD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tcac.
10. Operation within the trad (MAX) limit ensures that trcD (MAX) can be met. trad (MAX) is specified as a reference point only; if trad is greater than the specified tRAD (MAX) limit, access time is controlled exclusively by taA.
11. Either trch or trRh must be satisfied for a READ cycle.
12. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voн or VoL.
13. twcs, tRwd, tawd and tcwd are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs $\geq$ twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If trwd $\geq$ trwd (MIN), tAwD $\geq \operatorname{tawd}(\mathrm{MIN})$ and tcwD $\geq \operatorname{tcwD}(\mathrm{MIN})$, the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until $\overline{C A S}$ and $\overline{R A S}$ or $\overline{O E}$ go back to $\mathrm{V}_{\mathrm{H}}$ ) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
14. Output parameter (I/O) is referenced to corresponding CAS input, I/OO-I/O7 by LCAS and I/O8-I/O15 by UCAS.
15. During a READ cycle, if $\overline{O E}$ is LOW then taken HIGH before $\overline{\mathrm{CAS}}$ goes $\mathrm{HIGH}, \mathrm{I} / \mathrm{O}$ goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
16. Write command is defined as $\overline{W E}$ going low.
17. LATE WRITE and READ-MODIFY-WRITE cycles must have both tod and toer met ( $\overline{\text { OE HIGH during WRITE cycle) in order to ensure }}$ that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and

18. The I/Os are in open during READ cycles once tod or toff occur.
19. The first $\chi \overline{\mathrm{CAS}}$ edge to transition LOW.
20. The last $\chi$ CAS edge to transition HIGH.
21. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in EARLY WRITE cycles and $\overline{\text { WE }}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
22. Last falling $\chi \overline{\mathrm{CAS}}$ edge to first rising $\chi \overline{\mathrm{CAS}}$ edge.
23. Last rising $\chi \overline{\mathrm{CAS}}$ edge to next cycle's last rising $\chi \overline{\mathrm{CAS}}$ edge.
24. Last rising $\chi \overline{\mathrm{CAS}}$ edge to first falling $\chi \overline{\mathrm{CAS}}$ edge.
25. Each $\chi$ CAS must meet minimum pulse width.
26. Last $\chi$ CAS to go LOW.
27. I/Os controlled, regardless $\overline{\text { UCAS }}$ and $\overline{\text { LCAS }}$.
28. The 3 ns minimum is a parameter guaranteed by design.
29. Enables on-chip refresh and address counters.

## FAST-PAGE-MODE READ CYCLE



Don't Care

Note:

1. toff is referenced from rising edge of $\overline{\text { RAS }}$ or $\overline{\mathrm{CAS}}$, whichever occurs last.

FAST PAGE MODE READ-MODIFY-WRITE CYCLE


FAST-PAGE-MODE EARLY WRITE CYCLE ( $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)


Don't Care

FAST-PAGE-MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)


## FAST PAGE MODE EARLY WRITE CYCLE



## AC WAVEFORMS

READ CYCLE (With $\overline{\text { WE-Controlled Disable) }}$

$\overline{\text { RAS }}$-ONLY REFRESH CYCLE ( $\overline{O E}, \overline{\mathrm{WE}}=$ DON'T CARE)

$\overline{\text { CBR }}$ REFRESH CYCLE (Addresses; $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}=$ DON'T CARE)


HIDDEN REFRESH CYCLE ${ }^{(1)}(\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW})$


## Notes:

1. A Hidden Refresh may also be performed after a Write Cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
2. toff is referenced from rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last.

ORDERING INFORMATION : 3.3V
Commercial Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 50 | IS41LV16105B-50K | 400 -mil SOJ |
|  | IS41LV16105B-50KL | 400-mil SOJ, Lead-free |
|  | IS41LV16105B-50T | 400 -mil TSOP (Type II) |
|  | IS41LV16105B-50TL | 400 -mil TSOP (Type II), Lead-free |
| 60 | IS41LV16105B-60K | $400-$ mil SOJ |
|  | IS41LV16105B-60KL | 400 -mil SOJ, Lead-free |
|  | IS41LV16105B-60T | 400 -mil TSOP (Type II) |
|  | IS41LV16105B-60TL | 400-mil TSOP (Type II), Lead-free |

## Extended Range: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 50 | IS41LV16105B-50KE | 400 -mil SOJ |
|  | IS41LV16105B-50KLE | 400-mil SOJ, Lead-free |
|  | IS41LV16105B-50TE | 400 -mil TSOP (Type II) |
|  | IS41LV16105B-50TLE | 400 -mil TSOP (Type II), Lead-free |
| 60 | IS41LV16105B-60KE | 400 -mil SOJ |
|  | IS41LV16105B-60KLE | 400 -mil SOJ, Lead-free |
|  | IS41LV16105B-60TE | 400 -mil TSOP (Type II) |
|  | IS41LV16105B-60TLE | 400-mil TSOP (Type II), Lead-free |

Industrial Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Speed (ns) | Order Part No. | Package |
| :---: | :--- | :--- |
| 50 | IS41LV16105B-50KI | 400 -mil SOJ |
|  | IS41LV16105B-50KLI | 400-mil SOJ, Lead-free |
|  | IS41LV16105B-50TI | 400 -mil TSOP (Type II) |
|  | IS41LV16105B-50TLI | 400 -mil TSOP (Type II), Lead-free |
| 60 | IS41LV16105B-60KI | 400 -mil SOJ |
|  | IS41LV16105B-60KLI | 400 -mil SOJ, Lead-free |
|  | IS41LV16105B-60TI | 400-mil TSOP (Type II) |
|  | IS41LV16105B-60TLI | 400-mil TSOP (Type II), Lead-free |

## 400-mil Plastic SOJ

## Package Code: K



Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

| Symbol | Millimeters |  | Inches |  | Millimeters |  | Inches |  | Millimeters |  | Inches |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max |
| No. Leads | (N) 40 |  |  |  | 42 |  |  |  | 44 |  |  |  |
| A | 3.25 | 3.75 | 0.128 | 0.148 | 3.25 | 3.75 | 0.128 | 0.148 | 3.25 | 3.75 | 0.128 | 0.148 |
| A1 | 0.64 | - | 0.025 | - | 0.64 | - | 0.025 | - | 0.64 | - | 0.025 | - |
| A2 | 2.08 | - | 0.082 | - | 2.08 | - | 0.082 | - | 2.08 | - | 0.082 | - |
| B | 0.38 | 0.51 | 0.015 | 0.020 | 0.38 | 0.51 | 0.015 | 0.020 | 0.38 | 0.51 | 0.015 | 0.020 |
| b | 0.66 | 0.81 | 0.026 | 0.032 | 0.66 | 0.81 | 0.026 | 0.032 | 0.66 | 0.81 | 0.026 | 0.032 |
| C | 0.18 | 0.33 | 0.007 | 0.013 | 0.18 | 0.33 | 0.007 | 0.013 | 0.18 | 0.33 | 0.007 | 0.013 |
| D | 25.91 | 26.16 | 1.020 | 1.030 | 27.18 | 27.43 | 1.070 | 1.080 | 28.45 | 28.70 | 1.120 | 1.130 |
| E | 11.05 | 11.30 | 0.435 | 0.445 | 11.05 | 11.30 | 0.435 | 0.445 | 11.05 | 11.30 | 0.435 | 0.445 |
| E1 | 10.03 | 10.29 | 0.395 | 0.405 | 10.03 | 10.29 | 0.395 | 0.405 | 10.03 | 10.29 | 0.395 | 0.405 |
| E2 | 9.40 BSC |  | 0.370 BSC |  | 9.40 BSC |  | 0.370 BSC |  | 9.40 BSC |  | 0.370 BSC |  |
| e | 1.27 BSC |  | 0.050 BSC |  | 1.27 BSC |  | 0.050 BSC |  | 1.27 BSC |  | 0.050 BSC |  | obtain the latest version of this device specification before relying on any published information and before placing orders for products.

## Plastic TSOP

Package Code: T (Type II)


[^0] without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Rev. F


[^0]:    Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time

