Power MOSFET # 40 V, 2.65 m Ω , 145 A, Dual N-Channel #### **Features** - Small Footprint (5x6 mm) for Compact Design - Low R_{DS(on)} to Minimize Conduction Losses - Low Q_G and Capacitance to Minimize Driver Losses - NVMFD5C446NLWF Wettable Flank Option for Enhanced Optical Inspection - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant ## MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |--|------------|----------------------------|-----------------------------------|-----------------|------| | Drain-to-Source Voltage | | | V_{DSS} | 40 | V | | Gate-to-Source Voltage | | | V_{GS} | ±20 | V | | Continuous Drain | | T _C = 25°C | I _D | 145 | Α | | Current R _{θJC} (Notes 1, 2, 3) | Steady | T _C = 100°C | | 105 | | | Power Dissipation | State | T _C = 25°C | P_{D} | 125 | W | | R _{θJC} (Notes 1, 2) | | T _C = 100°C | | 62 | | | Continuous Drain | | $T_A = 25^{\circ}C$ | I _D | 25 | Α | | Current R _{0JA} (Notes 1, 2, 3) | Steady | T _A = 100°C | | 18 | | | Power Dissipation | State | T _A = 25°C | P_{D} | 3.5 | W | | R _{θJA} (Notes 1 & 2) | | T _A = 100°C | | 1.8 | | | Pulsed Drain Current | $T_A = 25$ | °C, t _p = 10 μs | I _{DM} | 644 | Α | | Operating Junction and Storage Temperature | | | T _J , T _{stg} | -55 to
+ 175 | °C | | Source Current (Body Diode) | | | I _S | 91 | Α | | Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_{L(pk)} = 11$ A) | | | E _{AS} | 171 | mJ | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ## THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|-----------------|-------|------| | Junction-to-Case - Steady State | $R_{\theta JC}$ | 1.38 | °C/W | | Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 46.9 | | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. ## ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|---|--------------------| | 40 V | 2.65 mΩ @ 10 V | 445.4 | | | $3.9~\mathrm{m}\Omega~@~4.5~\mathrm{V}$ | 145 A | #### **Dual N-Channel** A = Assembly Location Y = Year W = Work Week ZZ = Lot Traceability #### ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--|--|--|-----|------|------|-------| | OFF CHARACTERISTICS | | | | | | | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | | 40 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /
T _J | | | | 23 | | mV/°C | | Zero Gate Voltage Drain Current | tage Drain Current I _{DSS} | | $V_{GS} = 0 \text{ V}, \qquad T_{J} = 25 ^{\circ}\text{C}$ | | | 10 | | | | | $V_{DS} = 40 \text{ V}$ | T _J = 125°C | | | 100 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS}$ | = 20 V | | | 100 | nA | | ON CHARACTERISTICS (Note 4) | | | | | | • | - | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D} = 90 \mu A$ | | 1.2 | | 2.2 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | -5.2 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V | I _D = 20 A | | 2.2 | 2.65 | mΩ | | | | V _{GS} = 4.5 V | I _D = 20 A | | 3.0 | 3.9 | | | Forward Transconductance | 9FS | V _{DS} = 15 V, I _D = 50 A | | | 138 | | S | | CHARGES, CAPACITANCES & GATE RESIS | STANCE | | | | • | • | | | Input Capacitance | C _{ISS} | V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V | | | 3170 | | pF | | Output Capacitance | C _{OSS} | | | | 1270 | | | | Reverse Transfer Capacitance | C _{RSS} | | | | 48 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 4.5 V, V _{DS} = 32 V; I _D = 50 A | | | 25 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 10 V, V _{DS} = 32 V; I _D = 50 A | | | 54 | | | | Threshold Gate Charge | Q _{G(TH)} | V _{GS} = 4.5 V, V _{DS} = 32 V; I _D = 50 A | | | 5.7 | | nC | | Gate-to-Source Charge | Q _{GS} | | | | 10.7 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 7.0 | | | | Plateau Voltage | V _{GP} | | | | 5.7 | | V | | SWITCHING CHARACTERISTICS (Note 5) | | | | | | • | • | | Turn-On Delay Time | t _{d(ON)} | | | | 14.8 | | | | Rise Time | t _r | VGs = 4.5 V. Vn | s = 32 V. | | 16.8 | | 1 | | Turn-Off Delay Time | t _{d(OFF)} | $V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 5 \text{ A}, R_{G} = 1.0 \Omega$ | | | 34.9 | | ns | | Fall Time | t _f | | | | 15.2 | | | | DRAIN-SOURCE DIODE CHARACTERISTIC | s | | | | • | • | • | | Forward Diode Voltage | 9 | V _{GS} = 0 V, | $T_J = 25^{\circ}C$ | | 0.8 | 1.2 | | | | | I _S = 20 A | $I_S = 20 \text{ A}$ $T_J = 125^{\circ}\text{C}$ | | 0.7 | | V | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0$ V, $dIS/dt = 50$ A/ μ s, $I_{S} = 5$ A | | | 54 | | | | Charge Time | t _a | | | | 24 | | ns | | Discharge Time | t _b | | | | 30 | | | | Reverse Recovery Charge | Q _{RR} | | | | 55 | | nC | | | | | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures. ### TYPICAL CHARACTERISTICS ## TYPICAL CHARACTERISTICS Figure 7. Capacitance Variation Figure 8. Gate-to-Source vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Drain Current vs. Time in Avalanche ## **TYPICAL CHARACTERISTICS** Figure 13. Thermal Response ## **DEVICE ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |-------------------|---------|------------------------------------|-----------------------| | NVMFD5C446NLT1G | 5C446L | DFN8
(Pb-Free) | 1500 / Tape & Reel | | NVMFD5C446NLWFT1G | 446LWF | DFN8
(Pb–Free, Wettable Flanks) | 1500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### PACKAGE DIMENSIONS # DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual) CASE 506BT ISSUE E ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** ## LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com MAX 1.10 0.51 0.51 0.33 5.10 4.30 1.90 6.10 4.40 0.65 12 ° 0.71 3.75 Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative