High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

General Description

The MAX8904 power-management IC provides a complete power-supply solution for 2-cell Li+ handheld/Li-Poly applications such as point-of-sale terminals, digital SLR cameras, digital video cameras and ultra-mobile PCs.
The MAX8904 includes five step-down converters (1V2, 1V8, 3V3, 5V0, and ADJ) with internal MOSFETs and $+1 \% /-3 \%$ accurate output voltages for processor core, memory, I/O, and other system power rail requirements. LCD backlighting is supported by a WLED boost converter that can provide 35 mA for up to 8 WLEDs. This boost converter is also configurable as a 6 -bit programmable voltage source that can provide up to 63 mA of output current. A 500 mA , internal MOSFET, current-limited switch (CLS), allows system designers to control input power to external peripheral devices.
The MAX8904 controls an external n-MOSFET for input overvoltage protection (13.5V, typ) and an external p-MOSFET for reverse polarity protection (up to -28V) of downstream circuits. System input current monitoring for power management is facilitated by an on-board current-sense amplifier (CSA) with differential inputs and a 1.2 V full scale, ground-referenced analog output. A $400 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$ interface supports output voltage setting of the ADJ power rail and boost regulator (voltage source mode), WLED current setting for the boost regulator (WLED current regulator mode), GPIO control, and enable/disable of ADJ, 5V0, boost regulator, CSA blocks. The $I^{2} \mathrm{C}$ interface also enables the host processor to read on-board fault status registers when interrupted by the MAX8904 FLT pin under system fault conditions.
An emergency shutdown input, $\overline{\text { SHDN }}$ allows converters preselected through $I^{2} \mathrm{C}$ to turn off immediately under power-fail conditions, thus saving valuable firmware execution time. An uncommitted, active-low, 14 V open-drain comparator (CMP) with a 1.25 V internal reference is also provided in the MAX8904. The MAX8904 PWREN logic input turns on the 1V2, 1V8, 3 V 3 , and 5 V 0 default power rails.
The MAX8904 is available in a 56 -pin, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFN package.
Point-of-Sale Terminals Applications
Digital Video Cameras
Digital SLR Cameras
Ultra-Mobile PCs

Pin Configuration appears at end of data sheet.

- 3.4V to 13.2V Input Voltage Range
- 1MHz, Up to 90% Efficient, Synchronous DC-DC Step-Down Converters
- Power Converters 1V2, 1V8, and ADJ Operated Out-of-Phase with Respect to 3V3 and 5V0
-667kHz Step-Up Converter Provides Up to 32V Output for Driving Up to Eight WLEDs
- Internal Compensation on All Power Converters
- Fast Line and Load Transient Responses
- Internal Soft-Start and Short-Circuit Protection on All Power Converter Outputs
- Input Overvoltage and Reverse Polarity Protection
- 250ms Fault Timer-Based Protection for Overload, Short Circuit
- ${ }^{2} \mathrm{C}$ Serial Interface for On/Off Control, Output Voltage, WLED Current, GPIO Setting, Fault Monitoring
- <15 A A Standby Current Over Operating Voltage Range and Temperature
- Compact, 56 -Pin, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFN Package Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX8904ETN +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 THIN QFN-EP* $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
$T=$ Tape and reel.
Typical Operating Circuit

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ABSOLUTE MAXIMUM RATINGS

OVPWR to	.-0.3V to +30V
RPGATE to GND	-0.3V to +17V
OVPWR to RPGATE	-0.3V to +22V
OVGATE to CS+	-0.3V to +6V
BSTFB to GND.	-0.3V to +40V
BSTLX to Exposed Pad (EP)	-0.3V to +40V
BSTSW to BSTIN	-16V to +0.3V
LVRPWR, BSTIN, BSTSW, 1 $5 \mathrm{VOIN}, \mathrm{CMPO}, \mathrm{CLSIN}$ to	$\begin{aligned} & \text { ADJIN, } \\ & .-0.3 V \text { to }+16 \mathrm{~V} \end{aligned}$
GPIO_ to EP	-0.3V to +6V
CS+, CS- to GND	-0.3V to +16V
CS+ to CS-	-0.3 V to +0.3 V
CLSOUT to GND	CLSIN + 0.3V)
LVROUT to GND.	VRPWR + 0.3V)
1V2FB, 1V8FB, 3V3FB, 5V0F	
CMPI to GND	VRIN5V + 0.3V)
1V2BST to 1V2LX, 1V8BST to 5VOBST to 5VOLX, ADJBS	$\begin{aligned} & 3 V 3 L X, \\ & \ldots-0.3 V \text { to }+6 V \end{aligned}$
LVRIN5V, LVROUT, $\overline{\text { SHDN, }}$ P	
GPIOPWR to GND	-0.3V to +6V

Note 1: _LX pins have internal clamp diodes to _IN and EP. Applications that forward bias these diodes should take care not to exceed the device's power-dissipation limits.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}_{\text {PWREN }}=5 \mathrm{~V}, _\right.$LX unconnected, $\operatorname{CREF}=0.1 \mu \mathrm{~F}$; when $\mathrm{V} _I \mathrm{~N}$ is specified, it implies all $_\mathrm{IN}$ pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
COMMON BLOCKS						
Input Operating Supply Range	V_IN	V_IN falling, OVP circuit not used	3.6		14	V
		V_IN rising, OVP circuit not used	5.8		14	
		V_IN falling, OVP circuit used	3.6		12.8	
		V_IN rising, OVP circuit used	5.8		13.2	
Input Standoff Voltage	VOVPWR				28	V
Standby Mode Supply Current	I_IN + ILVRPWR + ICS_	V _IN $=13.2 \mathrm{~V}$; all channels off		5.5		$\mu \mathrm{A}$
Quiescent Supply Current $(\mathrm{CH} 7+\mathrm{CH} 2+\mathrm{CH} 3+\mathrm{CH} 4 \text { Only })$	$\Delta{ }^{\text {QLVRPWR }}$ + I $_{\text {IV2IN }}+$ I IV8IN + I3V3IN + I5VOIN + I5VOFB	$\begin{aligned} & \text { No switching, } \mathrm{V}_{1 \mathrm{~V} 2 \mathrm{FB}}=1.3 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{~V} 8 \mathrm{FB}}=1.9 \mathrm{~V}, \mathrm{~V}_{3} \mathrm{~V} 3 \mathrm{FB}=3.4 \mathrm{~V}, \\ & \mathrm{~V}_{5 \mathrm{~V} F \mathrm{FB}}=5.1 \mathrm{~V} \end{aligned}$		100	165	$\mu \mathrm{A}$

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, _$LX unconnected, $\mathrm{CREF}=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{N}$ is specified, it implies all $_\mathrm{IN}$ pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
REF Output Voltage	VREF	IREF $=0 \mu \mathrm{~A}$		1.240	1.250	1.260	V
		$I_{\text {REF }}=10 \mu \mathrm{~A}$		1.249			
OSC Frequency	fosc			0.9	1	1.1	MHz
LVROUT Output Voltage		5.4 V < VLVRPWR < 14V		4.9	5.1	5.3	V
LVRPWR Undervoltage Lockout Threshold		VLVRPWR rising		5.3	5.55	5.8	V
		VLVRPWR falling		3.2	3.4	3.6	
LVRIN5V Undervoltage Lockout Threshold		VLVRIN5V rising			3.45		V
		VLVRIN5V falling		2.6			
SHDN Input High Voltage	V_{IH}	3 V < VLVRIN5V < 5.5 V		1.6			V
SHDN Input Low Voltage	$\mathrm{V}_{\text {IL }}$	3 V < VLVRIN5V < 5.5 V		0.5			V
$\overline{\text { SHDN }}$ Pullup Resistance to LVRIN5V					1		$\mathrm{M} \Omega$
$\overline{\text { SHDN }}$ Pulldown Resistance to GND					2		$\mathrm{M} \Omega$
PWREN Input High Voltage	V_{IH}	3.4 V < VLVRPWR < 14V		1.6			V
PWREN Input Low Voltage	$\mathrm{V}_{\text {IL }}$	3.4 V < VLVRPWR < 14V				0.5	V
PWREN Pulldown Resistance				1			$\mathrm{M} \Omega$
PWREN Deglitch Delay		Rising		10			$\mu \mathrm{s}$
FLT Output-Voltage Low	$V_{\text {FLT }}$	$\mathrm{FFLT}=20 \mathrm{~mA}$		0		0.4	V
$\overline{\text { FLT Open-Drain Leakage Current }}$		$V_{\text {FLT }}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.01		0.1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
FAULT Timer Delay	tFAULT			250			ms
Overtemperature Warning Flag		Rising (Note 3) (bit D3 of register ODh)		110	120	130	${ }^{\circ} \mathrm{C}$
Overtemperature Warning Flag Hysteresis				10			${ }^{\circ} \mathrm{C}$
Thermal Shutdown Latch Threshold		(Note 3)		140	152	165	${ }^{\circ} \mathrm{C}$
INPUT VOLTAGE PROTECTION							
OVPWR Undervoltage Lockout Threshold		VovPWR rising		3.75	4	4.25	V
		VovPWR falling		2.7	2.85	3.0	
OVPWR_UVLO_Rising to OVGATE Startup Delay	tSTARTUP	VoVPWR > VoVPWR_UVLO_RISING		32			ms
OVP Threshold	Vovp	VovPWR rising		13.3	13.65	14	V
		Hysteresis		0.17			
OVGATE Charge Current	lovgate_CHG	VOVGATE $=7.2 \mathrm{~V}$		10			$\mu \mathrm{A}$
OVGATE Discharge Resistance	RDChG	$\mathrm{V}_{\text {CS }+}=14.1 \mathrm{~V}, \mathrm{~V}_{\text {OVGATE }}=15.1 \mathrm{~V}$		40			Ω
RPGATE Pulldown Resistor	RRPGATE			50			k Ω
RPGATE Clamp Voltage	VCLAMP	$14 \mathrm{~V} \leq$ V ${ }^{\text {OVPWR }} \leq 28 \mathrm{~V}$			16	19	V

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, \quad$ LX unconnected, CREF $=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{IN}$ is specified, it implies all $_$IN pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I \mathrm{~N}=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, _$LX unconnected, $\mathrm{CREF}=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{N}$ is specified, it implies all $_\mathrm{IN}$ pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, \quad$ LX unconnected, CREF $=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{IN}$ is specified, it implies all $_$IN pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, \quad$ LX unconnected, CREF $=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{IN}$ is specified, it implies all $_$IN pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Accuracy		Voltage mode, BSTVSP register (0Ch) = 10h		-3		+3	\%
Operating Frequency	fBSTLX			667			kHz
Minimum Duty Cycle				10			\%
Maximum Duty Cycle				90	93	97	\%
PCS Current Accuracy	IPCS	BSTCSP register$(0 B h)=20 h$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	31.04	32	32.96	mA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	30.4		33.6	
PCS Leakage Current	IPCSLKG	$\mathrm{V}_{\mathrm{PCS}}=0 \text { to }$ LVRIN5V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		
BSTSW Leakage Current	IBSTSWLKG	$\begin{aligned} & \text { VBSTSW }=0, \text { VBSTIN } \\ & =14 \mathrm{~V}, \mathrm{BSTEN}= \\ & \text { logic } 0 \text { (bit D4 of } \\ & \text { Register 09h) } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		
BSTLX Leakage Current	IBSTLXLKG	$V_{\text {BSTLX }}=0$ to 36V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
BSTSW Switch On-Resistance	Ronbstsw				0.1		-
BSTLX Switch On-Resistance	Ronbstlx				0.3		-
BSTSW Switch Short-Circuit Current Limit	limmstsw				1.35		A
BSTLX Switch Current Limit	ILIMBSTLX				1.13		A
Output Voltage OK (BSTOK) Threshold		(Bit D7 of register OFh)	Rising, voltage mode only		95		\%
			Falling, voltage mode only		90		
Soft-Start Time		Voltage mode and current mode		4.096			ms
BSTOK Fault Blanking Time After Soft-Start Done		Voltage mode and current mode		1.024			ms
CH7 (1V2 STEP-DOWN CONVERTER)							
Output Voltage	$\mathrm{V}_{1 \mathrm{~V} 2 \mathrm{FB}}$	No load		1.200	1.212	1.224	V
Operating Frequency	$\mathrm{f}_{1} \mathrm{~V} 2 \mathrm{~L} \mathrm{X}$			1			MHz
Load Regulation				-2.5			\%/A
Line Regulation		$\mathrm{V}_{1 \mathrm{~V} 21 \mathrm{~N}}=3.4 \mathrm{~V}$ to 14 V		0.04			\%/V
Idle-Mode Trip Level		(Note 4)		200			mA
1V2LX Leakage Current	IVV2LXLKG	$\begin{aligned} & V_{1 \mathrm{~V} 2 \mathrm{LX}}=0,14 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{~V} 2 \mathrm{IN}}=14 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-5	0.01	+5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		
1V2BST Leakage Current	IIV2BSTLKG	$\mathrm{V}_{\text {1V2BST }}=5 \mathrm{~V}+$ $V_{1 V 2 I N}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	0.1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, \quad$ LX unconnected, CREF $=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{IN}$ is specified, it implies all $_$IN pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, _$LX unconnected, $\mathrm{CREF}=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{N}$ is specified, it implies all $_\mathrm{IN}$ pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
GPIO LOGIC INPUT/OUTPUT							
GPIOPWR UVLO		Rising		2.8			V
		Falling		2.5			
Input Threshold		Rising		$0.7 \times$ VGPIOPWR			V
		Falling		$\begin{gathered} 0.25 \times \\ \text { VGPIOPWR } \end{gathered}$			
Output-Voltage Low		$\mathrm{I}_{\text {GPIO_ }}=-20 \mathrm{~mA}$, open-drain output				0.5	V
Open-Drain Leakage Current		$\mathrm{V}_{\text {GPIO_ }}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	0.1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
Minimum Input Data Setup Time	tDS				100		ns
Minimum Input Data Hold Time	tD				1		$\mu \mathrm{s}$
Minimum Delay to Output Data Valid					5		$\mu \mathrm{s}$
Pullup Resistor from GPIO_ to GPIOPWR		$V \mathrm{GPIOPWR}=5 \mathrm{~V}$	Input mode		1		M
			Open-drain output mode	10			k_
GPIO_PWM Clock Frequency					244		Hz
OPEN-DRAIN COMPARATOR							
CMPI Input Current	ICMPI	$\mathrm{V}_{\text {CMPI }}=600 \mathrm{mV}$		0.01			$\mu \mathrm{A}$
CMPI Threshold	$V_{\text {CMPI }}$	Rising		1.2125	1.25	1.2875	V
CMPI Hysteresis	VCMPIHYS	25 mV overdrive		40			mV
$\overline{\text { CMPO }}$ Delay	t $\overline{\mathrm{CMPO}}$			5			$\mu \mathrm{s}$
Output-Voltage Low	$\checkmark \overline{\mathrm{CMPO}}$	$1 \overline{\mathrm{CMPO}}=-20 \mathrm{~mA}$				0.4	V
Open-Drain Leakage Current	ICMPOLKG	$V \overline{C M P O}=14 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} _I N=7.2 \mathrm{~V}, \mathrm{EP}=\mathrm{GND}, \mathrm{V}\right.$ PWREN $=5 \mathrm{~V}, _$LX unconnected, $\mathrm{CREF}=0.1 \mu \mathrm{~F} ;$ when $\mathrm{V} _\mathrm{N}$ is specified, it implies all $_\mathrm{IN}$ pins; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{2} \mathrm{C}$ C SERIAL INPUT/OUTPUT AND LOGIC						
Logic Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
Logic Input High Voltage	V_{IH}		2.0			V
Input Leakage Current	ILKG		-1		+1	$\mu \mathrm{A}$
Output-Voltage Low	VOL	ISINK $=3 \mathrm{~mA}$			0.4	V
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			10		pF
Serial-Clock Frequency	fscl				400	kHz
Clock Low Period	tLow		1.3			$\mu \mathrm{s}$
Clock High Period	thigh		0.6			$\mu \mathrm{s}$
BUS Free Time	tBUF		1.3			$\mu \mathrm{s}$
START Setup Time	tSU:STA		0.6			$\mu \mathrm{s}$
START Hold Time	thD: STA		0.6			$\mu \mathrm{s}$
STOP Setup Time	tSu:STO		0.6			$\mu \mathrm{s}$
Data-In Setup Time	tSU:DAT		100			ns
Data-In Hold Time	thD:DAT		0		900	ns
Receive SCL/SDA Minimum Rise Time	t_{R}	(Note 5)		$\begin{gathered} 20+0.1 \\ \times \text { CBUS } \end{gathered}$		ns
Receive SCL/SDA Maximum Rise Time	tR	(Note 5)		300		ns
Receive SCL/SDA Minimum Fall Time	$\mathrm{tF}_{\text {F }}$	(Note 5)		$\begin{gathered} 20+0.1 \\ \times \text { CBUS } \end{gathered}$		ns
Receive SCL/SDA Maximum Fall Time	$\mathrm{tF}_{\text {F }}$	(Note 5)		300		ns
Transmit SDA Fall Time	$\mathrm{tF}_{\text {F }}$	CBUS $=400 \mathrm{pF}$	$\begin{gathered} 20+0.1 \\ \times \text { Cbus } \end{gathered}$		300	ns
Pulse Width of Spike Suppressed	tSP	(Note 6)		50		ns
SEQUENCER						
POWER-UP SEQUENCING						
1V8 VOK to 3V3 Start Delay				3.6		ms
POWER-DOWN SEQUENCING						
3V3 Disable to 1V8 Disable Delay				15		ms
1V8 Disable to 1V2 Disable Delay				15		ms

Note 3: Not tested. Design guidance only.
Note 4: The idle-mode current threshold is the transition point between fixed-frequency PWM operation and idle-mode operation. The specification is given in terms of output load current for inductor values specified in Figure 1.
Note 5: CBUS = total capacitance of one bus line in pF. Rise and fall times are measured between $0.1 \times V_{B U S}$ and $0.9 \times V_{B U S}$.
Note 6: Input filters on SDA and SCL suppress noise spikes < 50ns.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics
$\left(\mathrm{V}_{\text {IN }}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

STARTUP SEQUENCING WAVEFORMS

INPUT CURRENT vs. TEMPERATURE
(CH2 + CH3 + CH7, SWITCHING, NO LOAD)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{CREF}=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

EFFICIENCY vs. OUTPUT CURRENT (1V8)

1 V8 LOAD TRANSIENT RESPONSE

1V8 LOAD TRANSIENT RESPONSE (10 mA TO 485 mA)

OUTPUT VOLTAGE LOAD REGULATION (1V8)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

EFFICIENCY vs. OUTPUT CURRENT (5V0)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics (continued)

$\left(V_{I N}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

ADJ LOAD TRANSIENT RESPONSE
(200 mA TO 2000mA TO 200 mA)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

BST STARTUP RESPONSE
(CURRENT MODE)

EFFICIENCY vs. INPUT VOLTAGE
(BST VOLTAGE MODE)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

200 $\mu \mathrm{s} / \mathrm{div}$

1V2 LOAD TRANSIENT RESPONSE
(300 mA TO 600 mA)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

$\left(V_{I N}=7.2 \mathrm{~V}, \mathrm{~V}_{\text {PWREN }}=3 \mathrm{~V}, \overline{\mathrm{SHDN}}\right.$ unconnected, $\mathrm{V}_{\text {ADJ }}=4 \mathrm{~V}, \mathrm{C}$ REF $=0.1 \mu \mathrm{~F}$, circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Pin Description

PIN	NAME	FUNCTION
1	CSOUT	Output Voltage of the Current-Sense Amplifier. CSOUT is referenced to analog ground, GND. Its fullscale voltage is 1.2 V for 60 mV differential input voltage at CS+ and CS-.
2	RPGATE	External p-MOSFET Gate Control Node for Reverse Polarity Protection. Internal reverse polarity sense circuitry controls the gate so that power is applied to the following n-MOSFET stage if and only if proper (positive) polarity of power is applied. If reverse polarity input power is applied, the p-MOSFET is kept off to protect the n-MOSFET stage and the IC.
3	OVPWR	Supply Voltage and Overvoltage Detection Node for the Overvoltage Protection Circuitry. Connect OVPWR to system external supply in the absence of reverse polarity protection p-MOSFET. When reverse polarity protection p-MOSFET is used, connect OVPWR to the source of the reverse polarity protection p-MOSFET.
4	OVGATE	External n-MOSFET Gate Control Node for Input Overvoltage Protection. The external n-MOSFET is turned on as long as VoVPWR is less than 13.3V. The external n-MOSFET is immediately turned off by pulling OVGATE low, when VovPWr exceeds 13.3 V , and the IC asserts the FLT output. The external n-MOSFET is turned back on when VovpWr falls below OVP threshold. Note that the $\mathrm{I}^{2} \mathrm{C}$ interface is always alive, is independent of the overvoltage protection circuit, and turns off only when VLVROUT falls below 3.4 V .
5	ADJBST	ADJ Step-Down Converter Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between ADJBST and ADJLX_.
6,7	ADJLX1 ADJLX2	ADJ Step-Down Converter Switching Node. Connect an inductor between ADJLX_ and the output of the ADJ converter. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between ADJLX_ and ADJBST. Connect ADJLX1 to ADJLX2.
8	ADJIN	ADJ Step-Down Converter Supply Input. Bypass ADJIN to power ground with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. Connect ADJIN to the input power supply node, $\mathrm{V}_{\text {IN }}$.
9	ADJFB	ADJ Step-Down Converter Feedback Input. Connect two $22 \mu \mathrm{~F}$ or a 47μ F output ceramic capacitor from the output inductor to power ground, and route the sense trace to ADJFB.
10	REF	1.25V Reference Output. Bypass REF to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. REF is internally pulled to GND in shutdown.
11	GND	Ground. Connect GND to the ground plane. Connect the ground plane with a short wide connection to the exposed pad (EP).
12	LVRIN5V	Power Supply for the Internal Analog Circuitry. It is derived from an internal low-voltage regulator output, LVROUT. Connect a 10_resistor between LVRIN5V and LVROUT. Bypass LVRIN5V to GND with a $1.0 \mu \mathrm{~F}$ or greater ceramic capacitor.
13	LVROUT	Internal Low-Voltage Regulator Output Bootstrapped to 5VO Step-Down Converter Output. LVROUT is the power supply for the internal drive circuitry. LVROUT provides a 5 V output when PWREN is pulled high. Bypass LVROUT to power ground with a $1.0 \mu \mathrm{~F}$ or greater ceramic capacitor.
14	LVRPWR	Internal 5V Low-Voltage Linear Regulator Input Supply. Decouple LVRPWR to power ground with a $0.22 \mu \mathrm{~F}$ or greater ceramic capacitor. Connect LVRPWR to the input power-supply node, VIN.
15	5VOFB	5 VO Step-Down Converter Feedback Input. Connect a 22 2 F output ceramic capacitor from the output inductor to power ground, and route the sense trace to 5VOFB.
16	5 VOIN	5VO Step-Down Converter Input Supply. Bypass 5VOIN to power ground with a $10 \mu \mathrm{~F}$ ceramic capacitor. Connect 5 VOIN to the input power-supply node, VIN .

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Pin Description (continued)

PIN	NAME	FUNCTION
17	5VOLX	5V0 Step-Down Converter Switching Node. Connect an inductor between 5VOLX and the output of the 5V0 converter. Connect a $0.1 \mu \mathrm{~F}$ capacitor between 5VOLX and 5VOBST.
18	5VOBST	5Vo Step-Down Converter Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 5VOBST and 5VOLX.
19	GPIOPWR	Power Supply for GPIO Inputs and Outputs. GPIOPWR can be connected to a supply voltage from 3.0 V up to 5.5 V . Correct a $1 \mu \mathrm{~F}$ ceramic capacitor between GPIOPWR and GND.
20-27	$\begin{gathered} \text { GPIOO- } \\ \text { GPIO7 } \end{gathered}$	$1^{2} \mathrm{C}$-Controlled GPIO Port. GPIO_ can be configured as: - Schmitt-trigger inputs with internal 1M pullup resistor to GPIOPWR - Open-drain outputs with internal 10k pullup resistor off-state and capable of sinking 20 mA current from GPIOPWR - Open-drain outputs with high-impedance off-state and capable of sinking 20 mA current from GPIOPWR - High-impedance outputs The default configuration during power-up is Schmitt-trigger inputs until reconfigured through the $I^{2} \mathrm{C}$ interface. The GPIO block has a dedicated power input supply, GPIOPWR. The MAX8904 samples its GPIOO at GPIOPWR power-up and selects one of two internal hardwired slave addresses for $\mathrm{I}^{2} \mathrm{C}$ addressing.
28	$\overline{\mathrm{CMPO}}$	Active-Low, Open-Drain Output of an Uncommitted Comparator. $\overline{\mathrm{CMPO}}$ can be pulled up to 14V.
29	CMPI	Comparator Input. Internal reference voltage is 1.25 V .
30	3V3FB	3 V3 Step-Down Converter Feedback Input. Connect two 22μ F or a 47μ F output ceramic capacitor from the inductor to power ground, and route the sense trace to 3V3FB. The 3V3FB provides power to the ${ }^{2} \mathrm{C}$ registers. Connect the SDA and SCL pullup resistors to 3 V 3 FB .
31	3 V 31 N	3V3 Step-Down Converter Input Supply. Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor between 3 V 3 IN and power ground. Connect 3 V 3 IN to the input power supply node, V_{IN}.
32	3V3LX	3V3 Step-Down Converter Switching Node. Connect an inductor between 3V3LX and the output of the 3V3 converter. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 3V3LX and 3V3BST.
33	3V3BST	3V3 Step-Down Converter Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 3V3BST and 3V3LX.
34	SCL	${ }^{2} \mathrm{C}$ Serial-Clock Input
35	SDA	$1^{2} \mathrm{C}$ Serial-Data Input/Output. Data is read on the rising edge of SCL.
36	1V2BST	1V2 Step-Down Converter Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 1V2BST and 1V2LX.
37	1V2LX	1V2 Step-Down Converter Switching Node. Connect an inductor between 1V2LX and the output of the 1V2 converter. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 1V2LX and 1V2BST.
38	1V2IN	1V2 Step-Down Converter Input Supply. Bypass 1V2IN to power ground with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. Connect 1V2IN to the input power supply node, VIN.
39	1V2FB	1V2 Step-Down Converter Feedback Input. Connect two 22μ F or a $47 \mu \mathrm{~F}$ output ceramic capacitor from the inductor to power ground, and route sense trace to 1V2FB. 1V2FB is sampled at power-up to determine if the 1V2 step-down converter is used or not. See the Power-Up/Down Sequencing for 1V2, 1V8, 3V3, and 5V0 Supplies section. Pull 1V2FB to LVRIN5V to configure the IC for operation without the 1V2 step-down converter.
40	$\overline{\text { FLT }}$	Active-Low, Open-Drain Fault Output. Low FLT indicates a fault condition. See the Fault Handling section for details.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Pin Description (continued)

PIN	NAME	FUNCTION
41	$\overline{\text { SHDN }}$	Shutdown Input. When $\overline{\text { SHDN }}$ is pulled low, the power converters that are selected in the SHUTDOWN register, if currently active, are immediately shut down. The IC recognizes a valid signal on SHDN only if $1 \mathrm{~V} 2,1 \mathrm{~V} 8$, and 3 V 3 supplies are in regulation.
42	PWREN	Enable Input. When PWREN is driven high, the LVROUT regulator is turned on, and the 1V2, 1V8, 3V3, and 5V0, are turned on with correct sequencing depending on the status of 1V2FB at LVR power-up. When PWREN is pulled low, the MAX8904 turns off all converters and internal blocks and goes into low-power standby mode.
43	TEST	Test Pin. Leave as no connection. Do not connect power or ground.
44	1V8FB	1V8 Step-Down Converter Feedback Input. Connect a $22 \mu \mathrm{~F}$ output ceramic capacitor from the output inductor to power ground, and route the sense trace to 1V8FB.
45	1V8IN	1V8 Step-Down Converter Input Supply. Bypass 1V8IN to power ground with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. Connect the 1 V 8 IN to the input power supply node, V IN .
46	1V8LX	1V8 Step-Down Converter Switching Node. Connect an inductor between 1V8LX and the output of 1V8 converter. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 1V8LX and 1V8BST.
47	1V8BST	1V8 Step-Down Converter Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor between 1V8BST and 1V8LX.
48	BSTLX	BST Open-Drain Switch Node. Connect an inductor between BSTSW and BSTLX. BSTLX is high impedance in standby mode.
49	BSTSW	BST True Shutdown Switch Terminal. Connect an inductor between BSTSW and BSTLX. Bypass BSTSW to power ground with a $2.2 \mu \mathrm{~F}$ ceramic capacitor.
50	BSTIN	BST Step-Up Converter Supply Input. Bypass BSTIN to power ground with a $1 \mu \mathrm{~F}$ ceramic capacitor. Connect BSTIN to the input power supply node, VIN.
51	BSTFB	BST Step-Up Converter Feedback Input. Connect BSTFB to the output ceramic capacitor of the step-up converter. Use a $1 \mu \mathrm{~F}$ capacitor in current regulator mode and use a $10 \mu \mathrm{~F}$ capacitor for voltage regulator mode.
52	PCS	LED Current Sink. When the BST step-up converter is in current-mode operation, connect the cathode of WLED string to PCS and the anode of the WLED string to the output capacitor. In voltage mode, PCS must be connected to GND.
53	CLSOUT	Current-Limited Switch Output. Turn on the load switch through the ${ }^{2} \mathrm{C}$ interface to connect the switch input, CLSIN, to the load.
54	CLSIN	Current-Limited Switch Input. Connect CLSIN to the input power supply node, VIN.
55	CS-	Current-Sense Amplifier Inverting Input. Connect CS- to the load side of current-sense resistor.
56	CS+	Current-Sense Amplifier Noninverting Input. Connect CS+ to the supply-side of current-sense resistor.
-	EP	Exposed Pad. Power grounds and ground plane must be star-connected to the EP. All large currents from converters flow through the exposed pad that also acts as a heat sink. A large number of vias are needed to connect EP to board power ground plane.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

NOTE: 1V2, 1V8, AND ADJ OPERATE IN PHASE. 3V3 AND $5 V 0$ OPERATE INPHASE WITH RESPECT TO EACH OTHER, BUT ARE DELAYED BY 300ns WITH RESPECT TO 1V2, 1V8, AND ADJ.
Figure 1. Typical Application Circuit and Function Diagram

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Detailed Description

The MAX8904 power-management ICs provide a complete power-supply solution for 2-cell Li+ handheld/Li-Poly applications such as point-of-sale terminals, digital SLR cameras, digital video cameras, and ultra-mobile PCs.
The MAX8904 include five step-down converters (1V20.6A, 1V8-0.975A, 3V3-1.25A, 5V0-0.8A, and ADJ1.5A) with internal MOSFETs and $+1 \% /-3 \%$ accurate output voltages for processor core, memory, I/O, and other system power rail requirements. The ADJ converter provides an adjustable output voltage that is 6bit programmable through the $I^{2} \mathrm{C}$ interface from 3.0 V to 5.1 V , in 33.3 mV steps.
LCD backlighting is supported by a WLED boost converter that can provide 35 mA for up to 8 WLEDs while operating in the current regulator mode. This boost converter is also configurable as a 6 bit programmable voltage source that can provide up to 63 mA of output current. In this voltage mode, the output voltage is 6 -bit programmable through the $\mathrm{I}^{2} \mathrm{C}$ interface from 12.5 V to 18.7 V , in 100 mV steps.

System input current monitoring for power management is facilitated by an on-board Current Sense Amplifier (CSA) with differential inputs and a 1.2 V full scale ground referenced analog output. The CSA has an $I^{2} \mathrm{C}$ programmable gain of $20 \mathrm{~V} / \mathrm{V}$ and $40 \mathrm{~V} / \mathrm{V}$ for fullscale outputs of 4A and 2A, respectively, when used with a $15 \mathrm{~m} \Omega$ current-sense resistor.
A $400 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$ interface supports output voltage setting of ADJ power rail and boost regulator (voltage source mode), WLED current setting for the boost regulator (WLED current regulator mode), enable/disable of ADJ, 5VO, boost regulator, CSA and GPIO control. The I ${ }^{2}$ C interface also enables the host processor to read onboard fault status registers when interrupted by the MAX8904 FLT pin under system fault conditions. An emergency shutdown input, $\overline{\text { SHDN }}$ allows converters preselected through ${ }^{2}{ }^{2} \mathrm{C}$ to turn off immediately, thus saving valuable firmware execution time under power fail conditions.
The MAX8904 features an 8-bit GPIO port controller with PWM capability. The GPIO port pins power up as Schmitttrigger CMOS inputs. Programmable configurations are:

- Schmitt-trigger input with internal $1 \mathrm{M} \Omega$ pullup to GPIOPWR
- Open-drain output, with internal $10 \mathrm{k} \Omega$ pullup resistor off-state, capable of sinking up to 20 mA current from GPIOPWR
- Open-drain output with high-impedance state, capable of sinking up to 20 mA current from GPIOPWR
- High-impedance output

GPIOO can be used to set the ${ }^{2} \mathrm{C}$ slave address of the MAX8904 to either CEh or 8Eh (see Table 1).
A current-limited switch (CLS) is provided, with a minimum output current of 425 mA , which allows system designers to control input power to external peripheral devices.
The MAX8904 supports input overvoltage protection (OVP) at 13.5 V (typ) by controlling an external n-MOSFET and reverse polarity protection (down to -28 V) of downstream circuits by controlling an external p-MOSFET.
An uncommitted, active-low, high voltage open-drain comparator (CMP) with a 1.25 V internal reference and 20 mA sink current capability that can function as a buzzer driver or can be used for power fail sensing is also provided.
The MAX8904's PWREN logic input turns on 1V2, 1V8, 3V3, and 5VO default power rails. An internal 5V lowvoltage linear regulator powered from the input power source provides power for the internal drive and control blocks. When the input is below 5 V , the regulator output follows the input down to 3.4 V . When the input voltage drops below 3.4 V (UVLO), all circuitry except the overvoltage protection block are turned off. When the input voltage drops below 2.85 V (OVPWR UVLO), the overvoltage protection block is turned off.

I2C Interface

The MAX8904 internal I²C serial interface provides flexible control setup, including ON/OFF control of all power converters (except 1V2, 1V8, and 3V3), CLS, CSA and CMP, the ADJ output voltage, the BST output voltage or output current, and the 8-bit GPIO port functionality. The MAX8904 internal control and fault status registers are also accessed through the standard bidirectional, 2 -wire ${ }^{12} \mathrm{C}$ serial interface. The ${ }^{2} \mathrm{C}$ serial interface consists of a serial-data line (SDA) and a seri-al-clock line (SCL) to achieve bidirectional communication between the master and the slave. The MAX8904 is a slave-only device, relying upon a master to generate a clock signal. The master (typically a microprocessor) initiates data transfer on the bus and generates SCL to permit data transfer. The MAX8904 supports SCL clock rates up to 400 kHz .
${ }^{2}$ C is an open-drain bus. SDA and SCL require pullup resistors (500 0 or greater). Optional resistors (24) in series with SDA and SCL protect the device inputs from high-voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus signals.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

${ }^{2}$ ² Slave Address

A bus master initiates communication with MAX8904 as a slave device by issuing a START condition followed by the MAX8904 address. As shown in Table 1, the MAX8904 responds to either one of two internally hardwired slave addresses depending on the GPIOO status when GPIOPWR powers up for the first time and exceeds its UVLO (rising) threshold. This address is latched internally and can only be changed if the LVRPWR voltage is cycled, and the GPIOPWR voltage exceeds UVLO again.

Pullup Voltage

The MAX8904 ${ }^{2}$ ² interface SDA and SCL line should use the 3V3 supply as its pullup voltage.

START and STOP Conditions

Both SDA and SCL remain high when the serial interface is inactive. The master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the MAX8904, it
Table 1. MAX8904 Slave Addresses

GPIOO STATUS AT VGPIOPWR > VGPIOPWR_UVLO (RISING)	SLAVE ADDRESS READ	SLAVE ADDRESS WRITE
Logic 0 (GPIO0 pulled down by an internal 100k resistor between GPIO0 and GND)	8Fh	8Eh
Logic 1 (GPIO0 pulled up by an internal 1M resistor between GPIO0 and GPIOPWR)	CFh	CEh

issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 2). Both START and STOP conditions are generated by the bus master.
To send a series of commands to the MAX8904, the master issues REPEATED START (Sr) commands instead of a STOP command to maintain the bus control. In general, a REPEATED START command is functionally equivalent to a regular START command.
When a STOP condition or incorrect address is detected, the MAX8904 internally disconnect SCL from the bus until the next START condition to minimize digital noise and feedthrough.

Data Transfer

Each data bit, from the most significant bit to the least significant bit, is transferred one by one during each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section).
Each transmit sequence is framed by a START condition and a STOP condition. Each data packet is nine bits long: eight bits of data followed by an acknowledge bit.

Acknowledge

 Both the $\mathrm{I}^{2} \mathrm{C}$ bus master and the MAX8904 (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine bit data packet. To generate an acknowledge (A) signal, the receiving device pulls SDA low before the rising edge

Figure 2. 2-Wire Serial Interface Timing Detail

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

of the acknowledge-related clock pulse (ninth pulse) and keeps it low during the high period of the clock pulse (Figure 3). To generate a not-acknowledge (NA) signal, the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse. Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Communication Protocols

The following ${ }^{2}{ }^{2} \mathrm{C}$ communication protocols are supported by the MAX8904:

- Writing to a single register
- Writing multiple bytes using register-data pairs
- Reading from a single register
- Reading from sequential registers

Writing to a Single Register

Figure 4 shows the protocol for the master device to write one byte of data to the MAX8904. The write byte protocol is as follows:

1) The master sends a START (S) command.
2) The master sends the 7 -bit slave address followed by a write bit (low).
3) The addressed slave asserts an acknowledge (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave updates with the new data
8) The slave acknowledges the data byte.
9) The master sends a STOP (P) condition.

Figure 3. Acknowledge

Figure 4. Write-Byte Format

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Writing Multiple Bytes Using Register-Data Pairs

Figure 5 shows the protocol for the master device to write multiple bytes to the MAX8904 using register-data pairs. It allows the master to address the slave only once and then send data to multiple registers in a random order. Registers may be written continuously until the master issues a STOP (P) condition. The write multiple bytes using register-data pairs protocol is as follows:

1) The master sends a START (S) command.
2) The master sends the 7-bit slave address followed by a write bit (low).
3) The addressed slave asserts an acknowledge by pulling SDA Iow.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave updates with the new data.
8) The slave acknowledges the data byte.
9) Steps 5 to 8 are repeated as many times as the master requires. Registers may be accessed in random order.
10) The master sends a STOP (P) condition.

Reading from a Single Register

Figure 6 shows the protocol for the master device to read one byte of data from the MAX8904. The read byte protocol is as follows:

1) The master sends a START (S) command.
2) The master sends the 7-bit slave address followed by a write bit (low).
3) The addressed slave asserts an acknowledge (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START (Sr) command.

Figure 5. Multiple Bytes Register-Data Pair Format

Figure 6. Read-Byte Format

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

7) The master sends the 7-bit slave address followed by a read bit (high).
8) The addressed slave asserts an acknowledge (A) by pulling SDA low.
9) The addressed slave places 8 -bits of data on the bus from the location specified by the register pointer.
10) The master asserts a not-acknowledge on the data line to complete operations.
11) The master issues a STOP (P) condition.

Reading from Sequential Registers

Figure 7 shows the protocol for reading from sequential registers. This protocol is similar to the read byte protocol except that the master issues an acknowledge to signal the slave that it wants more data. When the master has all the data, it issues a not-acknowledge (NA) and a STOP condition (P) to end the transmission. The continuous read from sequential registers protocol is as follows:

1) The master sends a START (S) command.
2) The master sends the 7-bit slave address followed by a write bit (low).
3) The addressed slave asserts an acknowledge (A) by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START (Sr) command.
7) The master sends the 7-bit slave address followed by a read bit (high).
8) The addressed slave asserts an acknowledge by pulling SDA low.
9) The addressed slave places 8 -bits of data on the bus from the location specified by the register pointer.
10) The master issues an acknowledge (A) signaling the slave that more data is needed.
11) Steps 9 and 10 are repeated as many times as the master requires. Following the last byte of data, the master issues a not-acknowledge (NA) to signal that it wishes to stop receiving data.
12) The master issues a STOP (P) condition.

Figure 7. Read from Sequential Registers Format

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

I2C Accessible Registers
The ${ }^{2} \mathrm{C}$ accessible registers are used to store all the control information from the SDA line and configure the MAX8904 for different operating conditions. Recycling
power at LVRPWR causes the MAX8904 to initialize the registers to their POR values. The register assignments of the MAX8904 are in Table 2.

Table 2. Register Assignments

REGISTER ADDRESS	R/W	POR value	REGISTER NAME	D7	D6	D5	D4	D3	D2	D1	D0
00h	R/W	00h	GPIO-A CONFIG	PWM enable/ disable	PWM bank select	GPIO1 configuration bits		PWM enable/ disable	PWM bank select	GPIOO configuration bits	
01h	R/W	00h	GPIO-B CONFIG	PWM enable/ disable	PWM bank select	GPIO3 configuration bits		PWM enable/ disable	PWM bank select	GPIO2 configuration bits	
02h	R/W	00h	GPIO-C CONFIG	PWM enable/ disable	PWM bank select	GPIO5 configuration bits		PWM enable/ disable	PWM bank select	GPIO4 configuration bits	
03h	R/W	00h	GPIO-D CONFIG	PWM enable/ disable	PWM bank select	GPIO7 configuration bits		PWM enable/ disable	PWM bank select	GPIO6 configuration bits	
04h	R/W	00h	GPIO-DATA	I/O-8	I/O-7	I/O-6	I/O-5	I/O-4	I/O-2	I/O-1	I/O-0
05h	R/W	00h	PWM-BANKO	MSB	-	-	-	-	-	-	LSB
06h	R/W	00h	PWM-BANK1	MSB	-	-	-	-	-	-	LSB
07h	R/W	00h	ENABLE	CSAEN	X	CMPEN	BSTEN	ADJEN	5VOEN	INIT	CLSEN
08h	R/W	00h	$\begin{aligned} & \text { SHUTDOWN } \\ & \text { (SHDN) } \end{aligned}$	CSA	X	CMP	BST	ADJ	5V0	X	CLS
09h	R/W	00h	MODE	CSAG	CSFLGEN	X	BSTIV	ADJM	X	X	OVOFF
OAh	R/W	00h	ADJSP	Lockout	X	MSB	-	-	-	-	LSB
OBh	R/W	00h	BSTCSP	X	X	MSB	-	-	-	-	LSB
OCh	R/W	00h	BSTVSP	Lockout	X	MSB	-	-	-	-	LSB
0Dh	R	00h	FAULTSTATUS	BSTFLT1	BSTFLTO	VOKFLT	OLFLT	TMP120	X	OCIN	OVIN
OEh	R	00h	OVERLOAD	BSTOL	ADJOL	5V0OL	3V3OL	1V80L	1V2OL	X	CLSOL
OFh	R	FFh	VOK	BSTOK	ADJOK	5V0OK	3V30K	1V8OK	1V2OK	X	CLSOK
10h	R	-	DEVICE ID	Chip ID MSB	-	-	-	Chip ID LSB	Chip Rev MSB	-	$\begin{aligned} & \hline \text { Chip } \\ & \text { Rev } \\ & \text { LSB } \end{aligned}$
11h	W	00h	CLRFLTS	Fault status and fault registers are cleared and $\overline{\text { FLT }}$ goes to high when CLRFLTS register is set to 01 h . Fault detection rearms when CLRFLTS is set back to 00h.							

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

GPIO Configuration Register

The 00h to 03h registers allow the host processor to setup GPIO0-GPIO7 configuration through the $1^{2} \mathrm{C}$ interface. Each nibble represents a physical GPIO port. These eight nibbles address all the operating requirements of the 8-bit GPIO port, including PWM dimming. LED blinking requirement is addressed by turning the LEDs on and off at the required rate through the $1^{2} \mathrm{C}$ interface. The least significant two bits of each nibble define whether the particular GPIO bit is either an input or an output. If it is an output bit, the output device structure (open-drain/pullup, open-drain/high impedance, or high impedance/high impedance) is also defined by these two bits. On power-up, the eight GPIO bits are configured as inputs. See Table 3 for details.

GPIO Data Register

The GPIO Data register (04h) is a read/write (R/W) register that allows the host processor to read those GPIO bits that are programmed as inputs and write to those GPIO bits that are programmed as outputs through the ${ }^{12} \mathrm{C}$ interface. For a read operation, all eight bits are read regardless of whether they are configured as
inputs or outputs. It allows the host processor to read status of all eight bits. For a write operation, only those bits that are configured as outputs are written to, and the input bits are neglected. On power-up, all GPIO bits are configured to inputs by default. Each data bit represents a physical GPIO port and its functionality is given in Table 3.

PWM Bank Register The PWM Bank registers PWM-BANKO (05h) and PWMBANK1 (06h) are used to set up two different pulsewidth modulation values and switch between them by changing the value of the PWM bank select bit (D6/D2) in the GPIO Configuration registers (00h to 04h). Running at a clocking rate of 244 Hz , these two registers allow the LEDs to be driven at 256 discrete levels of intensity control, from $0.0 \mu \mathrm{~s}$ on $/ 4.1 \mathrm{~ms}$ off (0%) to 4.084 ms on/16 μ s off (99.6\%). When multiple LEDs are controlled by the GPIO ports, the use of two PWM registers allows some LEDs to be dimmed while other LEDs are simultaneously brightened. Individual LEDs can also be switched between two intensities by toggling its PWM-BANK assignment. See Table 5.

Table 3. GPIO Configuration Register (00h to 03h)

PWM ENABLE	PWM BANK	GPIO CONFIGURATION		GPIO CONFIGRUATION DESCRIPTION
D7/D3	D6/D2	D5/D1	D4/D0	DATA BITS
X	X	0	0	Input with $1 \mathrm{M} \Omega$ pullup resistor to GPIO
		GPIO-Data (04h): $0=$ low, $1=$ high		
$\begin{aligned} 0 & =\text { Disabled } \\ 1 & =\text { Enabled } \end{aligned}$	$\begin{aligned} & 0=\text { BANKO } \\ & 1=\text { BANK1 } \end{aligned}$	0	1	Open-drain n-device with $10 \mathrm{k} \Omega$ pullup resistor to GPIO, and tolerant of sinking current from 5 V power supply
		GPIO-Data (04h): $0=$ sink, 1 = pullup		
$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$	$\begin{aligned} & 0=\text { BANKO } \\ & 1=\text { BANK1 } \end{aligned}$	1	0	Open-drain n-device with high-impedance state, and tolerant of sinking current from 5 V power supply
		GPIO-Data (04h): $0=$ pull, 1 = push		
		1	1	
X	X	$\begin{aligned} & \text { GPIO-Data (04h): } \\ & 0=H i-Z, 1=H i-Z \end{aligned}$		High-impedance (Hi-Z) output
0	0	0	0	Reset value = 0h

Table 4. GPIO Data Register (04h)

D7	D6	D5	D4	D3	D2	D1	D0	DATA BITS
$\mathrm{IO8}$	$\mathrm{IO7}$	IO 6	$\mathrm{IO5}$	IO 4	IO 3	IO 2	IO 1	Reset value $=00 \mathrm{~h}$

Table 5. GPIO PWM Bank Register (05h, 06h)

D7	D6	D5	D4	D3	D2	D1	D0	DATA BITS
MSB	-	-	-	-	-	-	LSB	PWM-BANK0
MSB	-	-	-	-	-	-	LSB	PWM-BANK1
0	0	0	0	0	0	0	0	Reset value $=00 \mathrm{~h}$

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Enable Register

With the exception of the $1 \mathrm{~V} 2,1 \mathrm{~V} 8$, and 3 V 3 power converters, the Enable register (Table 6) allows the host processor to enable/disable the individual channel when needed. If a bit is programmed to 1 , the corresponding power converter is enabled; otherwise, with a value of 0 , the corresponding power converter remains disabled, even if valid data has been programmed in the associated set point register (OAh, OBh, or OCh) for the ADJ or BST power converter. Conversely, if the ADJEN bit for ADJ or the BSTEN bit for BST is set to 1, with a set point register (OAh, OBh, or OCh) value of 00h, the ADJ or BST power converter remains disabled. When the MAX8904 turns off a particular power converter under a fault condition, it sets the corresponding Enable register bit to 0 .
Note that the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 converters are turned on when PWREN is pulled high, but the 5 V 0 converter can be turned on/off by the Enable register bits once it is above its VOK thresholds. The 1V2, 1V8, and 3V3 converters can be turned off only by pulling PWREN Iow.

Firmware Initialization at Power-Up The MAX8904 requires a mandatory firmware procedure to be executed by the host processor at power-up to initialize the part correctly. The following register writes should be executed before responding to an interrupt on the FLT pin of the MAX8904.

- 04(h) \rightarrow Register 07(h) (Sets the INIT bit to 0)
- 01(h) \rightarrow Register 11(h)
- $00(\mathrm{~h}) \rightarrow$ Register 11(h)

Note that the firmware should keep the INIT bit set to 0 under all operating conditions.

Firmware Initialization for CLS Operation

The MAX8904 requires a mandatory firmware procedure to be executed by the host processor after turning ON the CLS block to initialize the CLS block correctly. The following firmware steps should be executed after turning ON the CLS block before responding to an interrupt on the FLT pin of the MAX8904:

- Execute a 300 ms (min) delay.
- After the 300 ms delay, execute the following register writes:

> 01(h) \rightarrow Register 11(h)
> 00(h) \rightarrow Register 11(h)

Shutdown Register

The Shutdown register works in conjunction with SHDN to program which converters are turned off in the event of a power failure. $\overline{\text { SHDN }}$ is connected to the midpoint of a resistor-divider from LVRIN5V to GND, and is nominally at 3.3V (see Table 7).
Upon receiving a power-fail signal, the host processor asserts the active-low $\overline{\text { SHDN }}$, and only those power converters whose corresponding bits are programmed to 0 in the Shutdown register are turned off, and their associated Enable bits in the Enable register, if currently programmed to 1 , are set to 0 . The power converters whose bits in the Shutdown register are programmed to 1 remain enabled.
If a power failure occurs, where the external power source voltage falls below the 3.4V, the MAX8904 enters the UVLO state. It powers up with default settings when it subsequently comes out of UVLO. Note that the host processor can still hold $\overline{\text { SHDN }}$ low at this point and it does not cause any action on the MAX8904. The MAX8904 performs the shutdown operation only when it detects a high-to-low transition on SHDN.
Note that the 1V2, 1V8, and 3V3 power controllers are always ON and can not be turned off through the Shutdown register.

Table 6. Enable Register (07h)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
CSAEN	X	CMPEN	BSTEN	ADJEN	5 VOEN	INIT	CLSEN	$00 h$

Table 7. Shutdown Register (08h)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
CSA	X	CMP	BST	ADJ	5 V 0	X	CLS	00 h

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Abstract

Mode Register The Mode register is used to configure the operating mode of various functional blocks. See Table 8. CSAG (Bit 7): The MAX8904 provides a programmable gain current-sense amplifier. The CSAG bit is used to determine the gain setting for CSA. If it is programmed to 0 , the amplifier gain is set to $20 \mathrm{~V} / \mathrm{V}$. If it is programmed to 1, the amplifier gain is set to 40V/V. CSFLGEN (Bit 6): The CSFLGEN bit is used to enable/disable the CSA input over-current fault detection feature. If the CSFLGEN bit is high, the MAX8904 sets the OCIN (D1) bit in the FAULT STATUS register, and asserts FLT when an input overcurrent is sensed at CSOUT. The input overcurrent fault detection is disabled if CSFLGEN is set to 0 . BSTIV (Bit 4): The BST step-up converter supports voltage mode or current mode operation and the mode selection is realized by the BSTIV bit. If it is programmed to 0 , the converter operates in the current mode with the BSTCSP register setting. If it is programmed to 1, the converter operates in the voltage mode with the BSTVSP register setting.

ADJM (Bit 3): The MAX8904 supports automatic switching from pulse-width modulation (PWM) to pulseskipping modulation (PSM) to improve power supply efficiency at light loads for all of the power converters except the ADJ step-down converter that must be set by the ADJM bit. Because the pulse-skipping mode has inherently larger voltage ripple, it may be necessary for the ADJ supply to remain in pulse-width modulation mode when powering noise sensitive loads such as a GPRS radio module. ADJM bit allows the host processor to force the ADJ controller to remain in PWM mode, if desired. When it is programmed to 0 , the ADJ power converter automatically switches between PSM and PWM modes. When it is programmed to 1 , the power controller is forced to remain in PWM mode.
OVOFF (Bit 0): The OVOFF bit is used to turn off the external overvoltage protection n-MOSFET, for the purpose of battery pack conditioning. When it is programmed
to 0 , the overvoltage protection circuit determines the state of the external overvoltage protection n-MOSFET. When it is programmed to 1 , the overvoltage protection n-MOSFET is turned off.

ADJSP Register

The MAX8904 uses the I²C interface to set the output voltage of ADJ power controller. A 6-bit value adjusts the ADJ output voltage from 3 V to 5.067 V , in 33.3 mV increments (see Table 10). It is an invalid setting if the ADJSP register is set as $00 \mathrm{~h}(2.967 \mathrm{~V})$. The first valid setting is $01 \mathrm{~h}(3 \mathrm{~V})$. See Table 9 for the ADJSP register definition.
Table 10 shows hex codes for various output voltage settings of the ADJ power controller.
Bit 7 (LOCKOUT) of the ADJSP register allows the voltage setting to be programmed only one time after power-up. After power-up, the host processor sets the ADJSP value only once. When the host processor changes the 00h setting to a valid number, the MAX8904 sets the LOCKOUT bit to 1 . Once it is set to 1, subsequent changes to the 6-bit ADJSP value are locked out. Only by recycling power, the LOCKOUT bit can be restored to 0 . Note that the ADJSP register is an R/W register, and it allows the user to read the lockout bit and determine whether the MAX8904 had already been set to a valid output voltage.
When the MAX8904 detects that the ADJEN bit is 1 , and recognizes valid data in the ADJSP register, the ADJ controller is enabled and soft-starts to the target output voltage. When the Enable bit for the ADJ power converter is set to 1 with an ADJSP register value of 00h, the ADJ stays in the off condition. Conversely, with the ADJEN bit set to 0 , the regulator remains disabled, even if valid data has been programmed in the ADJSP register. Neither of these two conditions generates a FLT assertion, since the power converter is considered to be in the off state. Fault detection is enabled only if the ADJEN bit is high, and valid data has been programmed in the ADJSP register. See Table 11.

Table 8. Mode Register (09h)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
CSAG	CSFLGEN	X	BSTIV	ADJM	X	X	OVOFF	00h

Table 9. ADJSP Register (OAh)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
LOCKOUT	X	MSB	-	-	-	-	LSB	00h
0	0	0	0	0	0	0	0	00 h

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 10. ADJ Output Voltage Settings

ADJ VOLTAGE	HEX CODE	ADJ VOLTAGE	HEX CODE
3.000	1	4.066	21
3.033	2	4.099	22
3.066	3	4.133	23
3.099	4	4.166	24
3.133	5	4.199	25
3.166	6	4.233	26
3.199	7	4.266	27
3.233	8	4.299	28
3.266	9	4.333	29
3.299	A	4.366	2A
3.333	B	4.399	2B
3.366	C	4.433	2 C
3.399	D	4.466	2D
3.433	E	4.499	2 E
3.466	F	4.533	2 F
3.499	10	4.566	30
3.533	11	4.599	31
3.566	12	4.633	32
3.599	13	4.666	33
3.633	14	4.699	34
3.666	15	4.733	35
3.699	16	4.766	36
3.733	17	4.799	37
3.766	18	4.833	38
3.799	19	4.866	39
3.833	1A	4.899	3A
3.866	1B	4.933	3B
3.899	1 C	4.966	3 C
3.933	1D	4.999	3D
3.966	1E	5.033	3 E
3.999	1F	5.066	3F
4.033	20	-	-

Table 11. ADJEN/ADJSP Truth Table

ADJEN BIT	ADJSP VALID SET POINT	ADJ ENABLED	FAULT DETECTION ENABLED
0	00 h	No	No
0	$>00 \mathrm{~h}$	No	No
1	00 h	No	No
1	$>00 \mathrm{~h}$	Yes	Yes

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 12. BSTCSP Register (0Bh)

D7	D6	D5	D4	D3	D2	D1	D0	RESET VALUE
Reserved	Reserved	MSB	-	-	-	-	LSB	00 h
X	X	0	0	0	0	0	0	00 h

BST Current Set Point Register
The BST step-up converter has two modes of operation: current and voltage. The current-mode operation is used to drive a WLED string, while the voltage-mode operation provides a regulated DC voltage for TFT or OLED panels.
In the current mode, the WLED string is connected from the BST output to PCS and the control loop regulates the LED current to the value set in the BSTCSP register through the $I^{2} \mathrm{C}$ interface. The BSTCSP register (OBh) is defined in Table 12. A 6-bit value allows the host processor to adjust the current from 1 mA to 63 mA , in 1 mA minimum increments. The maximum recommended increment is 16 mA per $\mathrm{I}^{2} \mathrm{C}$ command. It is an invalid setting if the BSTCSP register is set to $00 \mathrm{~h}(0 \mathrm{~mA})$. The first valid number is $01 \mathrm{~h}(1 \mathrm{~mA})$. The 3Fh setting corresponds to 63mA (see Table 13 for WLED current settings and corresponding hex codes).
The host processor can change the dimming levels as many times as desired during normal operation.
In current mode, the value programmed in the BSTVSP register (OCh) is used as an overvoltage threshold. When the output voltage in current mode reaches the threshold, the converter is immediately latched off, and it requires either the host processor to issue either a CLRFLTS command and drive BSTEN high, or recycling input power to start up again. Recommended overvoltage threshold settings for the LED strings are provided in Table 14. The overvoltage threshold is programmable from 13.4 V to 32 V in 300 mV increments. A 00 h setting in the BSTVSP register corresponds to 13.1 V and is an invalid setting. A 01 h value corresponds to a valid 13.4 V overvoltage setting. The host processor can only program this overvoltage setting in the BSTVSP register once, after which the lockout bit is set to 1 to prevent subsequent programming attempts. The one-time programmability of the BSTVSP register applies to overvoltage setting in both current mode and voltage mode.

Table 13. BSTCSP LED Current Settings

LED CURRENT (mA)	HEX CODE	LED CURRENT (mA)	HEX CODE
1	01	33	21
2	02	34	22
3	03	35	23
4	04	36	24
5	05	37	25
6	06	38	26
7	07	39	27
8	08	40	28
9	09	41	29
10	OA	42	2A
11	OB	43	2B
12	OC	44	2 C
13	OD	45	2D
14	OE	46	2 E
15	OF	47	2 F
16	10	48	30
17	11	49	31
18	12	50	32
19	13	51	33
20	14	52	34
21	15	53	35
22	16	54	36
23	17	55	37
24	18	56	38
25	19	57	39
26	1A	58	3A
27	1B	59	3B
28	1C	60	3 C
29	1D	61	3D
30	1 E	62	3E
31	1F	63	3F
32	20	-	-

Table 14. Overvoltage Threshold Settings for BST Regulator Current-Mode Operation

NO. OF SERIES WLEDs	BSTVSP SETTING (V)	CODE IN BSTVSP REGISTER (0Ch)
4	18.3	04 h
5	22.5	12 h
6	26.7	20 h
7	30.9	2 h
8	35.1	3 h

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

BST Voltage Set Point Register
When the BST operates in voltage mode, a device such as a TFT or OLED display panel can be connected between the BST output and power ground. PCS is connected to GND in this application to disable the current sink function. In this mode, the BST acts as a voltage source with current limit functionality and regulate
its output to the value set in the BSTVSP register (see Table 15). A 6 -bit value adjusts the voltage from 12.5 V to 18.7 V in 100 mV increments (see Table 16). It is an invalid setting if the BSTVSP register is set to 00h (12.4V). The first valid number is $01 \mathrm{~h}(12.5 \mathrm{~V})$. Note that with an output of 12.5 V , the converter may be operating in dropout for an input voltage of 12.6 V .

Table 15. BSTVSP Register (0Ch)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
Lockout	Reserved	MSB	-	-	-	-	LSB	-
0	X	0	0	0	0	0	0	$00 h$

Table 16. BSTVSP Voltage Settings and Hex Codes

OUPUT VOLTAGE (V)	HEX CODE	OUTPUT VOLTAGE (V)	HEX CODE
12.5	01	15.7	21
12.6	02	15.8	22
12.7	03	15.9	23
12.8	04	16	24
12.9	05	16.1	25
13	06	16.2	26
13.1	07	16.3	27
13.2	08	16.4	28
13.3	09	16.5	29
13.4	OA	16.6	2A
13.5	OB	16.7	2B
13.6	OC	16.8	2C
13.7	OD	16.9	2D
13.8	OE	17	2 E
13.9	OF	17.1	2 F
14	10	17.2	30
14.1	11	17.3	31
14.2	12	17.4	32
14.3	13	17.5	33
14.4	14	17.6	34
14.5	15	17.7	35
14.6	16	17.8	36
14.7	17	17.9	37
14.8	18	18	38
14.9	19	18.1	39
15	1A	18.2	3A
15.1	1B	18.3	3B
15.2	1 C	18.4	3C
15.3	1D	18.5	3D

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 16. BSTVSP Voltage Settings and Hex Codes (Voltage Mode) (continued)

OUPUT VOLTAGE (V)	HEX CODE	OUTPUT VOLTAGE (V)	HEX CODE
15.4	1 E	18.6	3 E
15.5	1 F	18.7	3 F
15.6	20	-	-

Table 17. BSTEN/BST_SP Truth Table

BSTEN BIT	BST_SP VALID SET POINT	BST ENABLED	FAULT DETECTION ENABLED
0	00 h	No	No
0	$>00 \mathrm{~h}$	No	No
1	00 h	No	No
1	$>00 \mathrm{~h}$	Yes	Yes

Bit 7 (LOCKOUT) of the BSTVSP register allows the voltage setting to be programmed only one time after power-up. After power-up, the host processor sets the BSTVSP value only once. When the host processor changes the 00h setting to a valid number, the MAX8904 sets LOCKOUT bit to 1 . Once it is set to 1 , subsequent changes to the 6-bit BSTVSP value are locked out. Only by recycling power, the LOCKOUT bit can be restored to 0 . Note that the BSTVSP register is an R/W register, and it allows the user to check the lockout bit.
In voltage mode, when the MAX8904 detects that the BSTEN bit is 1 and recognizes valid data in the BSTVSP register, the BST regulator is enabled and soft-starts to the target output voltage. When the BSTEN is set to 1
with a BSTVSP register value of 00h, the BST regulator stays in the off condition. Conversely, with the BSTEN bit set to 0 , the regulator remains disabled, even if the valid data has been programmed in the BSTVSP register. Neither of these two conditions generates a FLT assertion, since the regulator is considered to be in the off state. Fault detection is enabled only if the BSTEN bit is high, and valid data has been programmed in the BSTVSP register. See Table 17.

Fault Handling
The MAX8904 has two fault registers (VOK and OVERLOAD) and a fault status register (FAULTSTATUS). See Tables 18, 20, and 21 for details about these register bits.

Table 18. Fault Status Register (ODh)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
BSTFLT1	BSTFLT0	VOKFLT	OLFLT	TMP120	X	OCIN	OVIN	O0h

Table 19. BST Fault Bit Description

BSTFLT1	BSTFLT0	FAULT DESCRIPTION
0	0	No fault.
0	1	Overvoltage (current mode only).
1	0	Open or reverse output diode, or open BSTFB connection (detected at startup before BSTLX switching).
1	1	PCS short to GND fault, or BST output short to PCS fault (current mode only, detected at startup before BSTLX switching).

Table 20. Overload Register (0Eh)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
BSTOL	VADJOL	5 V 0 OL	3 V 3 OL	1 V 8 OL	1 V 2 OL	\times	CLSOL	00 h

Table 21. VOK Register (OFh)

D7	D6	D5	D4	D3	D2	D1	D0	RESET
BSTOK	VADJOK	5 V0OK	$3 V 30 K$	1 V8OK	1 V2OK	\times	CLSOK	11 h

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

The MAX8904 handles faults as outlined in Tables 22 and 23 .
The FAULTSTATUS register indicates the type of system fault that has occurred. The BSTFLTO, BSTFLT1 bits are set based on the type of fault that has occurred in the BST step-up converter (see Table 19). The VOKFLT bit is set when a VOK fault has occurred on any one of the power converters.
A VOK fault occurs either when a converter fails to softstart or due to overload/short-circuit conditions on the output under normal operation, causing the output voltage to fall below its VOK threshold. The _OK bits in the VOK register are set to 1 at power up. When a VOK fault occurs, the _OK bit corresponding to the faulty
converter is set to 0 , indicating a VOK fault in the particular converter.
The OLFLT bit is set when the output current on a converter exceeds its overload threshold. The _OL bit in the OVERLOAD register corresponding to the faulty converter is set to 1 indicating an overload fault in the particular converter.
The TMP120 bit is set when the internal die temperature exceeds $+120^{\circ} \mathrm{C}$. With the current sense resistor across CS+, CS- pins of the MAX8904 connected in series with the input power source, the OCIN bit is set when the CSOUT voltage exceeds its CSFLAG threshold, indicating an input overcurrent condition. The OVIN bit is set when the input voltage sensed at the OVPWR pin exceeds the overvoltage threshold.

Table 22. Fault Handling

FAULT TYPE	FAULT RESPONSE AND RECOVERY
- Overload on 1V2, 1V8, 3V3 - VOK fault on 1V2, 1V8, 3V3 (detected after internal soft-start time plus a 2 ms delay).	- $\overline{F L T}$ goes to low, all regulators are turned off immediately after fault detection, and the corresponding bits in FAULTSTATUS, OVERLOAD, and VOK registers are set. - Fault detection is enabled for a regulator only if CLRFLTS=00h, and PWREN is high. - Toggling PWREN (high \rightarrow low \rightarrow high) if PWREN is still high, or driving PWREN from low to high resets all fault status and fault registers, pulls FLT to high, and causes the MAX8904 to restart the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies. - Recycling power to the LVRPWR input of the internal linear regulator causes the MAX8904 to power up and remain in standby mode if PWREN is low. If PWREN is high, the MAX8904 attempts to start the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies.
- $V_{C L S I N}-V_{C L S O U T}>1 V$, VOK fault on the current limited switch at the end of 250 ms soft-start time - Overvoltage, open LED fault on LED step-up converter (current mode only) - LED cathode (PCS) short to ground detected before BSTLX switching (current mode only) - LED cathode (PCS) short to LED boost output, detected before BSTLX switching (current mode only) - Missing or reversed output diode, open BSTFB connection, detected before BSTLX	- $\overline{F L T}$ goes to low and the regulator turns off immediately after fault detection. The corresponding bits in FAULTSTATUS, OVERLOAD, and VOK registers are set. - Setting CLRFLTS to 01h followed by CLRFLTS to 00h at any time clears all fault registers bits, pulls $\overline{F L T}$ to high, and rearms the MAX8904 for subsequent fault detection. - Fault detection is enabled for a regulator only if CLRFLTS=00h, and _EN=1 (The ADJ and BST step-up regulators also require valid data to be programmed in the ADJSP and BSTCSP/BSTVSP registers). - The regulator restarts, fault registers are cleared, $\overline{\text { FLT }}$ goes to high, if the _EN bit is toggled from 0 to 1. - Toggling PWREN (high \rightarrow low \rightarrow high) if PWREN is still high, or driving PWREN from low to high resets all fault status and fault registers, pulls FLT to high, and causes the MAX8904 to restart the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies. - Recycling power to the LVRPWR input of the internal linear regulator causes the MAX8904 to power up and remain in standby mode if PWREN is low. If PWREN is high, the MAX8904 attempts to start the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 22. Fault Handling (continued)

FAULT TYPE	FAULT RESPONSE AND RECOVERY
- BSTFB or LED anode shorted to ground (an external 40V-rated Schottky diode must be connected from power ground to BSTFB, as close as possible to the BSTFB capacitor)	- $\overline{F L T}$ goes to low and BSTLX switching stop immediately after fault detection. The corresponding bits in FAULTSTATUS, OVERLOAD registers are set. The BST regulator turns off 250 ms after the fault. - Setting CLRFLTS to 01h followed by CLRFLTS to 00h at any time clears all fault registers bits, pulls $\overline{F L T}$ to high, and rearms the MAX8904 for subsequent fault detection. - Fault detection is enabled for a regulator only if CLRFLTS $=00 h$, and BSTEN $=1$. Valid data must be programmed in the BSTCSP/BSTVSP registers). - The regulator restarts, fault registers are cleared, $\overline{\text { FLT goes to high, if the BSTEN bit is }}$ toggled from 0 to 1. - Toggling PWREN (high \rightarrow low \rightarrow high) if PWREN is still high, or driving PWREN from low to high resets all fault status and fault registers, pulls $\overline{F L T}$ to high, and causes the MAX8904 to restart the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies. - Recycling power to the LVRPWR input of the internal linear regulator causes the MAX8904 to power up and remain in standby mode if PWREN is low. If PWREN is high, the MAX8904 attempts to start the 1V2, 1V8, 3V3, and 5 Vo supplies.
- Overload on 5V0, ADJ, BST. VCLSIN-VCLSOUT > 1V, VOK fault on the current limiter in normal operation. - Output voltage < VOK falling threshold on 5V0, ADJ, BST (voltage mode only), (detected after soft-start time plus 2 ms delay for 5V0, ADJ, and 1.024 ms for BST.	- $\overline{\text { FLT }}$ goes to low immediately after fault detection, and fault status and fault registers are set. - For tFLT $\geq 250 \mathrm{~ms}$, the _EN bit is set to 0 , and the regulator turns off. - Setting CLRFLTS to 01h followed by CLRFLTS to 00h at any time clears all fault status and fault register bits, pulls $\overline{F L T}$ to high, and rearms the MAX8904 for subsequent fault detection. - FLT goes to low, fault status and fault register information of a tFLT < 250ms momentary fault event is latched until the command of setting CLRFLTS to 01h is issued. - Momentary tFLT $<250 \mathrm{~ms}$ faults do not cause the regulator to turn off. - Fault detection is enabled for a regulator only if CLRFLTS $=00 h$, and _EN $=1$. The ADJ and LED boost regulators also require valid data to be programmed in the ADJSP and BSTCSP or BSTVSP registers. - Regulator restarts and fault register and fault status register are cleared, $\overline{F L T}$ goes to high, if the _EN bit is toggled (0 to 1). - Toggling PWREN (high \rightarrow low \rightarrow high) if PWREN is still high, or driving PWREN from low to high resets all fault status and fault registers, pulls $\overline{\text { FLT }}$ to high, and causes the MAX8904 to restart the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 supplies. - Recycling power to the LVRPWR input of the internal linear regulator causes the MAX8904 to power up and remain in standby mode if PWREN is low. If PWREN is high, the MAX8904 attempts to start the 1V2, 1V8, 3V3, and 5V0 supplies.
Input overvoltage at OVPWR	- If an overvoltage event occurs in normal operation, the MAX8904 turns off the external n-MOSFET through OVGATE immediately. - $\overline{\text { FLT }}$ goes to low and OVIN goes to 1 in fault status register immediately after fault detection. - If the input voltage falls below the voltage of Vov - VHYS_OV, the OVP n-MOSFET turns back on. However, FLT stays low and OVIN stays high until the MAX8904 receives the command setting CLRFLTS to 01h. - Setting CLRFLTS to 01h followed by CLRFLTS to 00h at any time clears all fault status and fault register bits, pulls FLT to high, and rearms the MAX8904 for subsequent fault detection. - If overvoltage persists, the OV n-MOSFET remains off, and the MAX8904 regulator input supply decays to 2.85 V , and the MAX8904 turns off at this point. - If an overvoltage condition occurs at startup, the external OVP n-MOSFET does not turn on and the MAX8904 does not startup. Therefore no fault information is stored.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 22. Fault Handling (continued)

FAULT TYPE	FAULT RESPONSE AND RECOVERY
- $120^{\circ} \mathrm{C}$ Overtemperature Flag	- The MAX8904 sets the TMP120 bit in fault status register and pulls FLT low if the internal temperature reaches $+120^{\circ} \mathrm{C}$ (typ). All converters latch off when the temperature reaches $+150^{\circ} \mathrm{C}$ (typ), and the MAX8904 goes into standby mode. In this mode, the internal linear regulator is turned off and the $\mathrm{I}^{2} \mathrm{C}$ interface is no longer powered. Note that PWREN may still be held high in this mode. - Toggling PWREN (high \rightarrow low \rightarrow high) or recycling MAX8904 power at LVRPWR allows the MAX8904 to come out of thermal shutdown.
- Input Overcurrent	- If CSFLGEN is high, then the OCIN bit in the fault status register is set to 1 in the fault status register, and FLT goes high. If CSFLGEN is low, no action is taken. - Setting CLRFLTS to 01h followed by CLRFLTS to 00h at any time clears all fault status and fault register bits, pulls $\overline{\mathrm{FLT}}$ to high, and rearms the MAX8904 for subsequent fault detection.

Table 23. Summary of MAX8904 Fault Status Register and Fault Register Actions

FAULT TYPE	ACTIONS
Overload or short circuit on 1V2, 1V8, 3V3, 5V0, ADJ, and BST	OLFLT is set to 1 in the FAULTSTATUS register, and corresponding _OL is set to 1 in the OVERLOAD register.
VOK fault on 1V2, 1V8, 3V3, 5V0, ADJ, BST (voltage mode only), and current limiter	VOKFLT is set to 1 in the FAULTSTATUS register, and corresponding _OK is set to 0 in the VOK register.
	FAULTSTATUS register: BSTFLT1 and BSTFLT0 are set to 00 if none of the listed faults has occurred. Overvoltage on BST, open or reversed output diode, open BSTFB connection, PCS shorted to ground, PCS shorted to BST output
BSTFLT1 and BSTFLT0 are set to 01 for overvoltage on BST step-up converter (current mode only). BSTFLT1 and BSTFLT0 are set to 10 for open or reversed output diode, or open BSTFB connection (detected at startup before BSTLX switching). BSTFLT1 and BSTFLT0 are set to 11 for PCS shorted to ground or PCS shorted to BST output (current mode only, detected at startup before BSTLX switching).	
Input overvoltage fault	OVIN is set to 1 in the FAULTSTATUS register.
Input overcurrent fault	OCIN is set to 1 in the FAULTSTATUS register for CSFLGEN = 1.
$+120^{\circ} \mathrm{C}$ overtemperature flag	TMP120 is set to 1 in the FAULTSTATUS register.

Table 24. Device Identification Register (10h)

D7	D6	D5	D4	D3	D2	D1	D0	-
Chip ID MSB	-	-	-	Chip ID LSB	Chip Rev MSB	-	Chip Rev LSB	Read only

Device Identification Register Device identification register (10h) identifies the chip ID and revision, and is shown in Table 24. It is a read-only register.

CLRFLTS Register

The MAX8904 clears all fault registers when the CLRFLTS register (11h) is set to 01 h , to allow the processor to reset the fault and restart the system. When a fault
occurs, the host processor is interrupted and enters its interrupt service routine (ISR). It masks the interrupt, services the fault by reading the MAX8904 registers, and may clear the fault(s) to recheck for fault(s) or immediately act upon the faults, and unmasks the interrupt. If the fault is still present, the FLT signal goes low and the host processor enters its ISR again. CLRFLTS must be set to OOh to rearm fault detection.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Overvoltage and Reverse Polarity Protection

The MAX8904 has an overvoltage protection block as shown in Figure 8. This block has its own UVLO thresholds, linear regulator, and reference. It essentially operates as a stand-alone overvoltage protection block. Applying an external voltage greater than 4 V (typ) to OVPWR causes the overvoltage protection block to commence operation. At this time, the external n-MOSFET has not yet been turned on. After a 30 ms delay, if the OVPWR voltage is less than 13.65 V (typ), the overvoltage charge pump gate drive is powered up and OVGATE turns on the external n-MOSFET. Otherwise, if the OVPWR voltage is greater than 13.65 V , OVGATE holds the n-MOSFET off.
After the OVP n-MOSFET (Q1) powers up, the system voltage VINT comes up and powers the internal LVR linear regulator and all power inputs (_IN). When VIN exceeds the UVLO (rising), the MAX8904 waits for a logic-high signal on PWREN to start up the 1V2, 1V8, 3V3 and 5V0 supplies, provided VIN is greater than 5.6 V (typ).
Reverse polarity protection down to -28 V is provided by use of an external p-MOSFET (Q2) to protect downstream circuitry. When the input voltage goes negative, RPGATE goes high to turn off the external p-MOSFET. When the
input voltage rises in the positive direction to a maximum of +30 V , RPGATE pulls low and turns on the p-MOSFET. When an overvoltage event of up to +30 V occurs, an internal clamp protects the gate of the p-MOSFET from excessive voltage such that the $\mathrm{V}_{\text {GATE-SOURCE }}$ voltage of the external p-MOSFET (Q2) does not exceed 16V (typ).

Current Limited Switch

The current limited switch (CLS) allows the MAX8904 to control the amount of current that an external device draws from the supply voltage. The CLS is connected between the input supply voltage and the target peripheral device. It provides a peripheral current of at least 425 mA , and is protected under short-circuit conditions. A short-circuit condition that lasts greater than 250 ms latches the CLS off. The CLS can be enabled and disabled through the Enable register and can be selected for immediate power-fail shutdown in the Shutdown register.
An internal thermal loop protects the CLS from an overload or short-circuit fault that causes excessive power dissipation across the switch. It reduces the current delivered by the CLS if the die temperature rises above a preset temperature threshold $\left(+120^{\circ} \mathrm{C}\right)$ and thus limits the power dissipation in the CLS. The thermal loop is enabled only when VCLSIN - VCLSOUT > 1 V .

Figure 8. Overvoltage and Reverse Polarity Protection

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

With bit CLSEN in Enable register set to 1, the 250ms timer is activated. During normal operation, if VCLSIN VCLSOUT $>1 \mathrm{~V}, \overline{\mathrm{FLT}}$ is set, CLSOK bit is set to 0 , the VOKFLT bit is set to 1 , and the 250 ms timer is started. If VCLSIN - VCLSOUT $<1 \mathrm{~V}$ before the timer expires, the timer is reset and the IC resumes normal operation. The fault information is preserved and the status of $\overline{\mathrm{FLT}}$, CLSOK, and VOKFLT remain unchanged until the ${ }^{2} \mathrm{C}$ receives a CLRFLTS command. If VCLSIN - VCLSOUT > 1 V after 250 ms , the CLS is turned off, FLT is asserted, the CLSOK bit is set to 0 , the VOKFLT bit is set to 1 , and the CLSEN is set to 0 . The MAX8904 needs a CLRFLTS command to clear the fault information in the FAULTSTATUS and VOK registers and pull FLT high.

Current-Sense Amplifier

The current-sense amplifier measures the differential voltage across a current-sense resistor and generates an analog voltage proportional to the current-sense resistor differential voltage. This voltage is clamped internally to a maximum of 1.25 V . The CSA has two programmable-gain settings, $20 \mathrm{~V} / \mathrm{V}$ and $40 \mathrm{~V} / \mathrm{N}$. When used with a $15 \mathrm{~m} \Omega$ cur-rent-sense resistor, it allows full-scale (1.2V) output for 4A and 2A currents, respectively. The CSA sets the CSAOL bit in the Overload register if the maximum current is exceeded. The CSA can be enabled and disabled through the Enable register and can be selected for immediate power-fail shutdown in the Shutdown register.

Open-Drain Comparator

The open-drain comparator (CMP) is an uncommitted, 14 V open-drain output comparator with 20 mA of sinking capability. The CMP can be used for various functions such as independent print-head temperature monitoring, voltage comparison, driving a Piezo Buzzer, or a 20 mA load sinking. The CMP can be enabled and disabled through the Enable register and can be selected for immediate power-fail shutdown in the Shutdown register.

$\overline{F L T}$ Interrupt

The $\overline{F L T}$ interrupt is an active-low output that indicates any fault condition. The fault condition can be either internal (overtemperature) or external (overloaded output). For certain types of faults such as an overload fault, when $\overline{\text { FLT }}$ is driven low, an internal 250 ms timer is started. When the timer expires the MAX8904 disables the affected power converter. During the 250ms, from the time of the interrupt until the time the converter is disabled, the host processor can respond to the interrupt
and take an action such as shutting down the power converter or some other appropriate action, such as, reducing the load current. For other emergency faults such as an overvoltage fault, there is no 250ms timer related operation, $\overline{\mathrm{FLT}}$ is asserted and the converter is immediately turned off.

ADJ Step-Down Converter The ADJ power converter is an adjustable voltage stepdown converter that can be adjusted over a 6-bit range from 3.0 V to 5.067 V , in 33.3 mV increments. The ADJ power converter is intended to be used for powering various radio modules, such as Wi-Fi, GPRS, and CDMA.
The ADJ supply is designed to support a 2A peak and 1.414A RMS output current load. An L-C filter may be connected to the output capacitor to attenuate the switching frequency ripple component to within radio module specification.

Power-Up/Down Sequencing for 1V2, 1 V8, 3V3, and 5V0 Supplies

The PWREN signal initiates power-up of the default voltage rails on the MAX8904 if LVRPWR (the input of internal linear regulator) exceeds 5.6 V (typ). The default power-up rails are $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and 5 V 0 . If the 1 V 2 rail is not used, pulling 1V2FB to LVRIN5 configures the MAX8904 to operate without its 1V2 rail, with the corresponding power sequencing option. Power-down sequencing operates in the reverse sequence of power-up after PWREN goes low.
Figures 9 and 10 show the two power-up/down sequencing cases. Table 25 shows the sequencing truth table. The ADJ and BST supplies can be turned on by the host processor any time after the 3V3 supply reaches its regulation, but all rails and MAX8904 blocks are shut down when PWREN pulls low. Note that there is a fixed time delay (D5, 3.6ms, typ) between the 1V8 supply reaching its VOK threshold and the 3V3 supply start time.

Table 25. Sequencing Truth Table

STATE OF 1V2FB DURING D2	SEQUENCING MODE
0	$1 \mathrm{~V} 2,1 \mathrm{~V} 8$, and 3V3 sequenced, followed by 5V0
1	1 V 8 and 3V3 sequenced, followed by 5V0

High-Efficiency Power-Management IC with I2C

 Control for 2-Cell Li+ Battery Operated Devices
†068XVW

Figure 9. Power-Up/Down Sequencing with 1V2 Rail Used (See Table 26 for Timing Details)

Figure 10. Power-Up/Down Sequencing Without 1V2 Rail Used (See Table 26 for Timing Details)

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 26. Delay Time

DELAY	TIME (ms)
D2 (response time)	<1
D3 (1V/ms ramp rate)	1.2
D4 (1V/ms ramp rate)	1.8
D5 (fixed delay)	3.6
D6 (1V/ms ramp rate)	3.4
D7 (1V/ms ramp rate)	5
D8 (estimated voltage decay time)	15
D_UP (maximum power-up sequence)	11.6 for all supplies, 10ms for 1V2, 1V8, and 3V3
D_DOWN (estimated voltage decay time)	45

Applications Information

Inductors for Step-Down and BST Converters

The MAX8904 power converters are optimized to work with specific values of inductors. Either $4.7 \mu \mathrm{H}$ or $4.3 \mu \mathrm{H}$ inductors should be used for the $1 \mathrm{~V} 2,1 \mathrm{~V} 8,3 \mathrm{~V} 3$, and ADJ step-down converters. A $10 \mu \mathrm{H}$ inductor should be used for the 5V0 step-down converter. Ensure that the inductor saturation current rating exceeds the peak inductor current, and the rated maximum DC inductor current exceeds the maximum output current. For most applications, use an inductor with a DC current rating 1.25 times the maximum required output current. For maximum efficiency, the inductor DC resistance should be as low as possible. A $10 \mu \mathrm{H}$ inductor is recommended for the BST step-up converter. See Table 27 for recommended inductor specifications.

Input and Output Capacitors The input capacitor in a DC-DC converter reduces current peaks drawn from the input power source and reduces switching noise in the controller. The impedance of the input capacitor at the switching frequency should be less than the input source's output impedance so that high-frequency switching currents do not pass through the input source. The DC-DC converter output capacitor keeps output ripple small and ensures control-loop stability. The output capacitor must also have low impedance at the switching frequency.

Ceramic capacitors with X5R or X7R dielectrics are highly recommended for both input and output capacitors due to their small size, low ESR, and small temperature coefficients. It should be noted that the effective capacitance that can be obtained in ceramic capacitors should be derated based on their operating DC bias (maximum converter input voltage in the case of input capacitors and maximum converter output voltage in the case of output capacitors). See Table 27 for recommended capacitor specifications based on the considerations outlined above.

CLS Output Capacitor

To prevent the MAX8904 from sensing a startup fault condition, the maximum capacitance that should be connected to the CLSOUT pin is given by the following equation:

CCLSOUT(MAX) $\leq(425-\operatorname{lLOAD}) \times 225 / \operatorname{CLSIN}(M A X)$
where ILOAD is the load current on CLSOUT in mA, $V_{C L S I N(M A X) ~ i s ~ t h e ~ m a x i m u m ~ i n p u t ~ v o l t a g e ~ a t ~ C L S I N ~ i n ~}^{\text {in }}$ volts, and CCLSOUT is in $\mu \mathrm{F}$.

Bootstrap Capacitors

Connect a $0.1 \mu \mathrm{~F}$ low-ESR ceramic capacitor between the _LX and _BST for all the step-down converters. The bootstrap capacitor provides the gate-drive voltage for the internal high-side MOSFET. X7R or X5R grade dielectrics are recommended due to their stable values over temperature.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

Table 27. Recommended Component Specifications (See Figure 1)

COMPONENT	PART NUMBER	PART DESCRIPTION
L1	TOKO, DE3518 Series, 1127AS-100M	Inductor, SMT 10 $\mu \mathrm{H}, 20 \%, 145 \mathrm{~m} \Omega$ DCR, 1.2A
L2, L4	TOKO, DE3518 Series, 1127AS-4R7M	Inductors, SMT 4.7 $\mu \mathrm{H}, 20 \%, 60 \mathrm{~m} \Omega \mathrm{DCR}, 1.75 \mathrm{~A}$
L3, L5	TOKO, DE4518 Series, 1124BS-4R3M	Inductors, SMT 4.3 $\mu \mathrm{H}, 20 \%, 70 \mathrm{~m} \Omega \mathrm{DCR}, 2.65 \mathrm{~A}$
L6	TOKO, DE4518 Series, 1124BS-100M	Inductor, SMT 10رH, 20\%, 120m Ω DCR, 1.75A
C1	Murata, GRM188R71C224KA01D	Ceramic capacitor, $0.22 \mu \mathrm{~F}, 10 \%$, 16V, X7R, 0603
C2, C3, C10	Murata, GRM188R70J105KA01D	Ceramic capacitors, 1.0رF, 10\%, 6.3V, X7R, 0603
C4	Taiyo Yuden, EMK212BJ105KG-T	Ceramic capacitor, 1.0رF, 10\%, 16V, X7R, 0805
C5	Taiyo Yuden, EMK212BJ225KG-T	Ceramic capacitor, $2.2 \mu \mathrm{~F} 10 \%$, 16V, X7R, 0805
C6 (current mode)	Taiyo Yuden, UMK316B7105KL-T	Ceramic capacitor, 1.0 ${ }^{\text {F }}$, 10\%, 50V, X7R, 1206
C6 (voltage mode)	Murata GRM32DR61E106KA12L	Ceramic capacitor, 10رF, 10\%, 25V, X5R, 1210
C7, C15, C18, C21, C24	Taiyo Yuden, TMK212BJ475KG	Ceramic capacitors, $4.7 \mu \mathrm{~F}, 10 \%$, 25V, X7R, 0805
C8	Taiyo Yuden, AMK107BJ226MA	Ceramic capacitor, $2 \times 22 \mu \mathrm{~F}, 20 \%, 4 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0603$
C9, C12, C13, C16, C19, C22	Taiyo Yuden, EMK105B7104KV	Ceramic capacitors, $0.1 \mu \mathrm{~F}, 10 \%, 16 \mathrm{~V}, \mathrm{X7R}, 0402$
C11	Sanyo, 16CE680AX	Electrolytic capacitor, SMT 680رF, 20\%, 16V
C14	Taiyo Yuden, JMK316BJ226KL	Ceramic capacitor, $2 \times 22 \mu \mathrm{~F} 10 \%$, 6.3V, X5R, 1206
C17	Taiyo Yuden, JMK212BJ226KG	Ceramic capacitor, $22 \mu \mathrm{~F}, 10 \%$, 6.3V, X5R, 0805
C20	Taiyo Yuden, JMK316BJ226KL	Ceramic capacitor, $2 \times 22 \mu \mathrm{~F}, 10 \%$, 6.3V, X5R, 1206
C23	Taiyo Yuden, JMK316BJ226KL	Ceramic capacitor, $22 \mu \mathrm{~F}, 10 \%, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C25	Taiyo Yuden, TMK105B7223KV	Ceramic capacitor, $0.022 \mu \mathrm{~F}, 10 \%$, 25V, X7R, 0402
D1	ON Semiconductor, MBR0540T1G	Schottky diode, 40V, 0.5A, SOD123
D2 (the MAX8904 is protected for short-circuit fault at startup, D2 required only for short-circuit protection in normal operation)	ON Semiconductor, MBR0540T1G	Schottky diode, 40V, 0.5A, SOD123
Q1, Q2	Fairchild Semiconductor, FDS8962C	Dual n-/p-MOSFETs, 30V, 8-pin SO
R1	Yageo, RC0402FR-0710RL	Resistor, SMT 10.0л, 1/16W, 1\%, 0402
R2	Vishay, WSL1206R0150FEA	Resistor, 0.015 2 , 1/4W, 1\%, 1206 SMD
R3 (the MAX8904 is protected for PCS to BSTFB short fault at startup, R3 required only for short PCS to BSTFB short-circuit protection in normal operation)	Yageo, RC0402FR-0710RL	Resistor, SMT 10.0』, 1/16W, 1\%, 0402

PCB Layout and Routing

High switching frequencies and relatively large peak currents make the PCB layout a very important aspect of power converter design. Good design minimizes ground bounce, excessive EMI on the feedback paths, and voltage gradients in the ground plane, which can result in instability or regulation errors.
A separate low-noise analog ground plane containing the reference, linear regulator, signal ground, and GND must connect to the power-ground plane at only
one point to minimize the effects of power-ground currents. Connect GND to the exposed pad directly under the IC. Use multiple tightly spaced vias to the ground plane under the exposed pad to help cool the IC. Position the input capacitors from _IN to the power ground plane as close as possible to the IC. Connect the inductors and output capacitors as close as possible to the IC and keep the traces short, direct, and wide. Refer to the MAX8904 evaluation kit for the recommended PCB layout.

High-Efficiency Power-Management IC with I2C Control for 2-Cell Li+ Battery Operated Devices

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN-EP	T5677+2	$\underline{\mathbf{2 1 - 0 1 4 4}}$

